Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 26;12(1):1317.
doi: 10.1038/s41467-021-21628-z.

Ultracold atom interferometry in space

Affiliations

Ultracold atom interferometry in space

Maike D Lachmann et al. Nat Commun. .

Abstract

Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Optical setup.
Optical arrangement for space-borne light-pulse interferometry employing a BEC and associated diffraction processes. a, b After release of the multi-component rubidium BEC two light beams, A and B, with different frequencies νA and νB, and intensities travel in opposite directions parallel to the atom chip and generate a moving optical lattice driving Bragg processes, which coherently transfer momentum to the atomic wave packet along the x-direction (b). Two additional light beams tilted by two degrees emerge due to reflections of the beams A and B on the optical viewports. c Their interference with the lattice beams gives rise to a traveling spatial intensity modulation in the y-direction modifying the BEC wave function as well as inducing weak double-Bragg processes in x-direction (not shown). d In addition, the light beams are diffracted at the atom chip and the arising interference modulates their intensity in y-direction. The various effects of the light pulses on the multi-component wave packet are detected by a CCD-camera recording the shadow of the BEC irradiated by light (green circle) from the z-direction. Earth gravity pulls along the x-direction during space flight, and along the xz diagonal on ground.
Fig. 2
Fig. 2. Effects of a single light-pulse.
Depicted are the experimental observations (two upper panels) and theoretical simulations (lower panels) of the impact of a single light-pulse simultaneously inducing Bragg processes and phase imprinting on a matter-wave packet released from the trap in the low gravity environment of space (a) (left column), and on ground (b) (right column). Each picture shows the undiffracted and the diffracted parts due to Bragg and weak double-Bragg processes. In space, the striking feature is the amplitude modulation of all Bose-Einstein condensates along the y-direction which in our ground experiments was not visible, in accordance with our theoretical simulations. On ground, the free expansion time of the BECs was short (31 ms) to keep them in the Bragg beams and the focal region of the detection. In space, the longer expansion times (86 ms) lead to a larger fringe spacing which allows us to resolve the imprint. In addition, the phase imprinting due to the moving amplitude modulation vanishes on ground due to the Doppler shift caused by the larger detuning between the light beams A and B, resulting in a much larger velocity of the light pattern. In contrast to our model assuming a single BEC component, the experimental fringe patterns feature spatial distortions as well as a much lower contrast. The latter holds even in the case when only a segment of the picture along the y-direction (orange line) is analysed.
Fig. 3
Fig. 3. Experimental and simulated spatial matter-wave fringes.
The interference is created in a multi-component BEC by a sequence of three light pulses applied after release. a The associated Bragg processes create several spatially displaced, but still largely overlapping wave packets, resulting in an interference pattern in the three output ports of the interferometer corresponding to a transfer of either +1, −1 or 0 effective photon recoils. The fringes are recorded with and without a prior Stern–Gerlach-type spatial separation of the different spinor components. We model the experiment by solving the 2D-Gross-Pitaevskii equation of a BEC interacting with the light fields discussed in Fig. 1. b, c A close-up of one output port is shown with the corresponding line integrals along the red line (bottom) as well as their theoretical counterparts. The experiment displays a lower contrast due to spatially varying Rabi frequencies. The temporal sequence of the three light pulses also leads to an effective phase imprinting. di The stripe pattern (left) and contrast for a data slice (right) observed with and without the Stern–Gerlach separator are depicted. Without Stern–Gerlach separation the stripe pattern obtained for the slice along the orange line (d) features a lower contrast than our model (e) which might result from the relative motion of the spinor components. We observe a higher contrast for different magnetic states (f). Indeed, the components mF = ±1 feature a tilt of opposite sign with respect to the component mF = 0 which points to a residual magnetic field with a curvature in agreement with our numerical simulations (gi).

References

    1. Andrews MR, et al. Observation of interference between two Bose condensates. Science. 1997;275:637–641. doi: 10.1126/science.275.5300.637. - DOI - PubMed
    1. Denschlag J, et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science. 2000;287:97–101. doi: 10.1126/science.287.5450.97. - DOI - PubMed
    1. Birkl G, Gatzke M, Deutsch IH, Rolston SL, Phillips WD. Bragg scattering from atoms in optical lattices. Phys. Rev. Lett. 1995;75:2823–2826. doi: 10.1103/PhysRevLett.75.2823. - DOI - PubMed
    1. Bongs K, et al. Spectroscopy of dark soliton states in Bose-Einstein condensates. J. Opt. B. 2003;5:124–130. doi: 10.1088/1464-4266/5/2/369. - DOI
    1. Hagley EW, et al. Measurement of the coherence of a Bose-Einstein condensate. Phys. Rev. Lett. 1999;83:3112–3115. doi: 10.1103/PhysRevLett.83.3112. - DOI

LinkOut - more resources