The role of decidual regulatory T cells in the induction and maintenance of fetal antigen-specific tolerance: Imbalance between regulatory and cytotoxic T cells in pregnancy complications
- PMID: 33642099
- DOI: 10.1016/j.humimm.2021.01.019
The role of decidual regulatory T cells in the induction and maintenance of fetal antigen-specific tolerance: Imbalance between regulatory and cytotoxic T cells in pregnancy complications
Abstract
Fetal antigen-specific tolerance is important for maintaining allogeneic pregnancies. Maternal conventional T cells recognize fetal antigens; however, regulatory T (Treg) cells suppress immune reactions against the fetus. Fetal antigen-specific Treg cells are induced in the decidua upon contact with antigen-presenting cells and extravillous trophoblasts (EVTs). Functional alteration of cytotoxic T cells (CTLs) in the decidua also contributes to maintaining the pregnancy. Reduced, dysfunctional, and imbalanced Treg cell distribution likely contributes to the pathogenesis of pregnancy complications, such as miscarriage and preeclampsia. Recent studies have revealed differences in Treg cell characteristics during preeclampsia and miscarriage. Treg cell reduction in the decidua is likely associated with miscarriage. Insufficient expansion of fetal antigen-specific Treg cells in the decidua probably plays a role in preeclampsia pathogenesis. In addition, the balance between Treg cell-mediated tolerance and functional alteration of CTLs is important. Further investigations of functional molecules in Treg cells will contribute to the development of immunotherapy for pregnancy complications.
Keywords: Miscarriage; Preeclampsia; Pregnancy; cytotoxic T cell; regulatory T cell.
Copyright © 2021 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
