Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar;181(3):253-66.
doi: 10.1002/aja.1001810304.

Microcirculatory pathways in normal human spleen, demonstrated by scanning electron microscopy of corrosion casts

Affiliations

Microcirculatory pathways in normal human spleen, demonstrated by scanning electron microscopy of corrosion casts

E E Schmidt et al. Am J Anat. 1988 Mar.

Abstract

Confusion regarding microcirculatory pathways in normal human spleen has arisen due to extrapolation from pathological material and from other mammalian spleens, not to mention difficulties in tracing intricate three-dimensional routes from the study of thin sections or cut surfaces of tissue. We examined microcirculatory pathways in normal human spleens freshly obtained from organ transplant donors. A modified corrosion casting procedure was used to obtain an open view of vessels and their connections. Our results demonstrate: 1) "arteriolar-capillary bundles" within lymphatic nodules and extensive branching of arterioles in the marginal zone (MZ); 2) the marginal sinus around lymphatic nodules; 3) the peri-marginal cavernous sinus (PMCS) outside the MZ or immediately adjacent to the nodule itself; the PMCS receives flow via ellipsoid sheaths and MZ, or directly from arterial capillaries, and drains into venous sinuses; 4) fast pathways for flow into venous sinuses via ellipsoid sheaths; 5) arterial capillary terminations in the reticular meshwork of the red pulp or MZ ("open" circulation); direct connections to venous sinuses also occur ("closed" circulation), although rarely; and 6) numerous open-ended venous sinuses in the MZ, allowing a large proportion of the splenic inflow to bypass the red cell filtration sites in the reticular meshwork and at venous sinus walls.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms