Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2021 Feb 26;9(6):1343-1352.
doi: 10.12998/wjcc.v9.i6.1343.

Do medullary thyroid carcinoma patients with high calcitonin require bilateral neck lymph node clearance? A case report

Affiliations
Case Reports

Do medullary thyroid carcinoma patients with high calcitonin require bilateral neck lymph node clearance? A case report

Feng-Jiao Gan et al. World J Clin Cases. .

Abstract

Background: In clinical work, 85%-90% of malignant thyroid diseases are papillary thyroid cancer (PTC); thus, clinicians neglect other types of thyroid cancer, such as medullary thyroid carcinoma (MTC).

Case summary: We report a 53-year-old female patient with a preoperative calcitonin level of 345 pg/mL. There was no definitive diagnosis of MTC by preoperative fine-needle aspiration cytology or intraoperative frozen pathology, but the presence of PTC and MTC was confirmed by postoperative paraffin pathology. The patient underwent total thyroidectomy and bilateral central lymph node dissection. Close follow-up at 1.5 years after surgery revealed no signs of recurrence or metastasis.

Conclusion: The issue in clinical work-up regarding types of thyroid cancer provides a novel and challenging idea for the surgical treatment of MTC. In the absence of central lymph node metastasis, it is worth addressing whether patients with high calcitonin can undergo total thyroidectomy and bilateral central lymph node dissection without bilateral lateral neck lymph node dissection.

Keywords: Calcitonin; Case report; Fine needle aspiration cytology; Medullary thyroid carcinoma; Papillary thyroid carcinoma; Simultaneous different types of thyroid cancer; Surgery.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Figure 1
Figure 1
Ultrasound images. A-D: Ultrasound (US) suggested multiple hypoechoic nodules in bilateral lobes of the thyroid, with clear boundaries; E-G: US indicated the dotted blood flow signal in nodules.
Figure 2
Figure 2
Ultrasound images. A/E: Ultrasound suggested enlargement of cervical lymph nodes; B-D/F-H: Further contrast-enhanced ultrasound suggested uneven enhancement of enlarged lymph nodes from the medulla to cortex, with slightly lower medulla enhancement, suggesting that enlarged lymph nodes were mostly reactive hyperplasia.
Figure 3
Figure 3
Fine needle aspiration cytology. A and B: Right thyroid: There were many follicular cell masses, arranged in branching or thick papillary shape, the nuclei were large and pale, and the inclusion bodies were visible. These findings suggested that a papillary thyroid carcinoma [the Bethesda system for reporting thyroid cytopathology (TBSRTC) V] should be suspected; C: Left thyroid: A small number of cell clusters, cell arrangement disorder, large nucleus, obvious pleomorphism, and chromatin fine structure were noted. These findings suggested that a malignancy (TBSRTC V, type indeterminate) should be suspected.
Figure 4
Figure 4
Paraffin pathology (right thyroid). A and B: Photomicrographs showing hematoxylin-eosin (H&E) staining of a left thyroid nodule. The medullary thyroid carcinoma (MTC) component was mainly composed of irregular and solid nests of pleomorphic cells surrounded by a fibrovascular stroma with abundant amounts of acidophilic homogenous material, with large and polygonal cells, prominent nucleoli, and finely granular cytoplasm; C and D: The tumor cells of the MTC showed strong immunoreactivity for calcitonin and were negative for thyroglobulin.
Figure 5
Figure 5
Paraffin pathology (right thyroid). A-C: Photomicrographs showing hematoxylin-eosin (H&E) staining of a right thyroid nodule.

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. - PubMed
    1. Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin DM, Piñeros M, Znaor A, Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144:1941–1953. - PubMed
    1. Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, Maurer MS, McIver B, Mullan BP, Oberg AL, Powell CC, van Heerden JA, Goellner JR. Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940-1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–885. - PubMed
    1. Vinciguerra GL, Noccioli N, Cippitelli C, Minucci A, Capoluongo E, Bartolazzi A. Oncocytic Variant of Medullary Thyroid Carcinoma: A Rare Case of Sporadic Multifocal and Bilateral RET Wild-Type Neoplasm with Revision of the Literature. Rare Tumors. 2016;8:6537. - PMC - PubMed
    1. Kim WG, Gong G, Kim EY, Kim TY, Hong SJ, Kim WB, Shong YK. Concurrent occurrence of medullary thyroid carcinoma and papillary thyroid carcinoma in the same thyroid should be considered as coincidental. Clin Endocrinol (Oxf) 2010;72:256–263. - PubMed

Publication types

LinkOut - more resources