Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 19;23(6):2063-2068.
doi: 10.1021/acs.orglett.1c00205. Epub 2021 Mar 1.

A Thiol-Mediated Three-Step Ring Expansion Cascade for the Conversion of Indoles into Functionalized Quinolines

Affiliations

A Thiol-Mediated Three-Step Ring Expansion Cascade for the Conversion of Indoles into Functionalized Quinolines

Nantachai Inprung et al. Org Lett. .

Abstract

An operationally simple, high yielding three-step cascade process is described for the direct conversion of indole-tethered ynones into functionalized quinolines. A single "multitasking" thiol reagent is used to promote a three-step dearomatizing spirocyclization, nucleophilic substitution, and one-atom ring expansion reaction cascade under remarkably mild conditions. In addition, a novel route to thio-oxindoles is described, which was discovered by serendipity.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Transformations of Indole-Tethered Ynones
Scheme 2
Scheme 2. Scope of the Three-Step Thiol-Mediated Cascade for the Conversion of Ynones 1 into Quinolines 4
1 (1 equiv) and RSH (1.6 equiv) were stirred in DCE (0.1 M) for 20 h at RT unless specified. Reaction performed at 60 °C. HS-Tol = 4-methylbenzenethiol.
Scheme 3
Scheme 3. Conversion of Ynones 1 into Thio-Oxindoles 9 via a Desilylative Cascade Process
1 (1 equiv) and thiol 11 (1.6 equiv) were stirred in DCE (0.1 M) for 20 h at 60 °C.
Scheme 4
Scheme 4. Proposed Mechanism and Control Reactions

Similar articles

Cited by

References

    1. For reviews of tandem/cascade reactions, see:

    2. Taylor R. J. K.; Reid M.; Foot J.; Raw S. A. Tandem Oxidation Processes using Manganese Dioxide: Discovery, Applications and Current Studies. Acc. Chem. Res. 2005, 38, 851–869. 10.1021/ar050113t. - DOI - PubMed
    3. Nicolaou K. C.; Chen J. S. The art of total synthesis through cascade reactions. Chem. Soc. Rev. 2009, 38, 2993–3009. 10.1039/b903290h. - DOI - PMC - PubMed
    4. Plesniak M. P.; Huang H.-M.; Procter D. J. Radical cascade reactions triggered by single electron transfer. Nat. Rev. Chem. 2017, 1, 0077.10.1038/s41570-017-0077. - DOI
    5. Prabagar B.; Ghosh N.; Sahoo A. K. Cyclization and Cycloisomerization of π-Tethered Ynamides: An Expedient Synthetic Method to Construct Carbo- and Heterocycles. Synlett 2017, 28, 2539–2555. 10.1055/s-0036-1590877. - DOI
    6. Sperl J. M.; Sieber V. Multienzyme Cascade Reactions–Status and Recent Advances. ACS Catal. 2018, 8, 2385–2396. 10.1021/acscatal.7b03440. - DOI
    7. Huang H.-M.; Garduño-Castro M. H.; Morrill C.; Procter D. J. Catalytic cascade reactions by radical relay. Chem. Soc. Rev. 2019, 48, 4626–4638. 10.1039/C8CS00947C. - DOI - PubMed
    1. For selected examples from our own groups, see:

    2. Raw S.; Taylor R. J. K. Cascade Reactions of Substituted 1,2,4-Triazines: Rapid Access to Nitrogen-Containing Polycycles. J. Am. Chem. Soc. 2004, 126, 12260–12261. 10.1021/ja045780g. - DOI - PubMed
    3. Edwards M. G.; Kenworthy M.; Kitson R. A. A.; Scott M.; Taylor R. J. K. The Telescoped Intramolecular Michael/Olefination (TIMO) Approach to α-Alkylidene γ-Butyrolactones: Synthesis of (+)-Paeonilactone B. Angew. Chem., Int. Ed. 2008, 47, 1935–1937. 10.1002/anie.200705329. - DOI - PubMed
    4. Lawer A.; Rossi-Ashton J. A.; Stephens T. C.; Challis B. J.; Epton R. G.; Lynam J. M.; Unsworth W. P. Internal Nucleophilic Catalyst Mediated Cyclisation/Ring Expansion Cascades for the Synthesis of Medium-Sized Lactones and Lactams. Angew. Chem., Int. Ed. 2019, 58, 13942–13947. 10.1002/anie.201907206. - DOI - PubMed
    1. For studies relating to step 1, see:

    2. Ekebergh A.; Börje A.; Mårtensson J. Total Synthesis of Nostodione A, a Cyanobacterial Metabolite. Org. Lett. 2012, 14, 6274–6277. 10.1021/ol303036j. - DOI - PubMed
    3. James M. J.; Cuthbertson J. D.; O’Brien P.; Taylor R. J. K.; Unsworth W. P. Silver(I)- or Copper(II)-Mediated Dearomatization of Aromatic Ynones: Direct Access to Spirocyclic Scaffolds. Angew. Chem., Int. Ed. 2015, 54, 7640–7643. 10.1002/anie.201501812. - DOI - PubMed
    4. Clarke A. K.; James M. J.; O’Brien P.; Taylor R. J. K.; Unsworth W. P. Silica-Supported Silver Nitrate as a Highly Active Dearomatizing Spirocyclization Catalyst: Synergistic Alkyne Activation by Silver Nanoparticles and Silica. Angew. Chem., Int. Ed. 2016, 55, 13798–13802. 10.1002/anie.201608263. - DOI - PubMed
    5. Liddon J. T. R.; Rossi-Ashton J. A.; Clarke A. K.; Lynam J. M.; Taylor R. J. K.; Unsworth W. P. Divergent reactivity of indole tethered ynones with silver(I) and gold(I) catalysis: a combined synthetic and computational study. Synthesis 2018, 50, 4829–4836. 10.1055/s-0037-1610181. - DOI
    6. Fedoseev P.; Coppola G.; Ojeda G. M.; Van der Eycken E. V. Synthesis of Spiroindolenines by Intramolecular Ipso-Iodocyclization of Indol Ynones. Chem. Commun. 2018, 54, 3625–3628. 10.1039/C8CC01474D. - DOI - PubMed
    7. Han G.; Xue L.; Zhao L.; Zhu T.; Hou J.; Song Y.; Liu Y. Access to CF3-Containing Cyclopentaquinolinone Derivatives from Indolyl-ynones via Silver-Catalyzed One-pot Reaction. Adv. Synth. Catal. 2019, 361, 678–682. 10.1002/adsc.201801482. - DOI
    8. Rossi-Ashton J. A.; Clarke A. K.; Taylor R. J. K.; Unsworth W. P. Modular Synthesis of Polycyclic Alkaloid Scaffolds via an Enantioselective Dearomative Cascade. Org. Lett. 2020, 22, 1175–1181. 10.1021/acs.orglett.0c00053. - DOI - PMC - PubMed
    1. For radical dearomatizing spirocyclization reactions of indoles of the form 1, see:

    2. Ho H. E.; Pagano A.; Rossi-Ashton J. A.; Donald J. R.; Epton R. G.; Churchill J. C.; James M. J.; O’Brien P.; Taylor R. J. K.; Unsworth W. P. Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chem. Sci. 2020, 11, 1353–1360. 10.1039/C9SC05311E. - DOI - PMC - PubMed
    3. Chengwen Li C.; Xue L.; Zhou J.; Zhao Y.; Han G.; Hou J.; Song Y.; Liu Y. Copper-Catalyzed Trifluoromethylation of Ynones Coupled with Dearomatizing Spirocyclization of Indoles: Access to CF3-Containing Spiro[cyclopentane-1,3′-indole]. Org. Lett. 2020, 22, 3291–3296. 10.1021/acs.orglett.0c01097. - DOI - PubMed
    4. Zhou X.-Ji.; Liu H.-Y.; Mo Z.-Y.; Ma X.-L.; Chen Y.-Y.; Tang H.-T.; Pan Y.-M.; Xu Y.-L. Visible-Light-Promoted Selenylative Spirocyclization of Indolyl-ynones toward the Formation of 3-Selenospiroindolenine Anticancer Agents. Chem. - Asian J. 2020, 15, 1536–1539. 10.1002/asia.202000298. - DOI - PubMed
    1. For studies relating to step 2, see:Liddon J. T. R.; Clarke A. K.; Taylor R. J. K.; Unsworth W. P. Preparation and Reactions of Indoleninyl Halides: Scaffolds for the Synthesis of Spirocyclic Indole Derivatives. Org. Lett. 2016, 18, 6328–6331. 10.1021/acs.orglett.6b03221. - DOI - PubMed
    2. and ref (4b).

Publication types