Bilateral attention decoder: A lightweight decoder for real-time semantic segmentation
- PMID: 33647536
- DOI: 10.1016/j.neunet.2021.01.021
Bilateral attention decoder: A lightweight decoder for real-time semantic segmentation
Abstract
The encoder-decoder structure has been introduced into semantic segmentation to improve the spatial accuracy of the network by fusing high- and low-level feature maps. However, recent state-of-the-art encoder-decoder-based methods can hardly attain the real-time requirement due to their complex and inefficient decoders. To address this issue, in this paper, we propose a lightweight bilateral attention decoder for real-time semantic segmentation. It consists of two blocks and can fuse different level feature maps via two steps, i.e., information refinement and information fusion. In the first step, we propose a channel attention branch to refine the high-level feature maps and a spatial attention branch for the low-level ones. The refined high-level feature maps can capture more exact semantic information and the refined low-level ones can capture more accurate spatial information, which significantly improves the information capturing ability of these feature maps. In the second step, we develop a new fusion module named pooling fusing block to fuse the refined high- and low-level feature maps. This fusion block can take full advantages of the high- and low-level feature maps, leading to high-quality fusion results. To verify the efficiency of the proposed bilateral attention decoder, we adopt a lightweight network as the backbone and compare our proposed method with other state-of-the-art real-time semantic segmentation methods on the Cityscapes and Camvid datasets. Experimental results demonstrate that our proposed method can achieve better performance with a higher inference speed. Moreover, we compare our proposed network with several state-of-the-art non-real-time semantic segmentation methods and find that our proposed network can also attain better segmentation performance.
Keywords: Attention mechanism; Deep learning; Real time; Semantic segmentation.
Copyright © 2021 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
