Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May 1;262(2):592-8.
doi: 10.1016/0003-9861(88)90410-9.

Partial purification, characterization, and kinetic analysis of isoflavone 5-O-methyltransferase from yellow lupin roots

Affiliations

Partial purification, characterization, and kinetic analysis of isoflavone 5-O-methyltransferase from yellow lupin roots

H E Khouri et al. Arch Biochem Biophys. .

Abstract

An isoflavone 5-O-methyltransferase was partially purified from the roots of yellow lupin (Lupinus luteus) by fractional precipitation with ammonium sulfate, followed by gel filtration and ion-exchange chromatography using a fast-protein liquid chromatography system. This enzyme, which was purified 810-fold, catalyzed position-specific methylation of the 5-hydroxyl group of a number of substituted isoflavones. The methyltransferase had a pH optimum of 7 in phosphate buffer, an apparent pI of 5.2, a molecular weight of 55,000, no requirement for Mg2+, and was inhibited by various SH-group reagents. Substrate interaction kinetics of the isoflavonoid substrate and S-adenosyl-L-methionine gave converging lines which were consistent with a sequential bireactant binding mechanism. Furthermore, product inhibition studies showed competitive inhibition between S-adenosyl-L-methionine and S-adenosyl-L-homocysteine and noncompetitive inhibition between the isoflavone and either S-adenosyl-L-homocysteine or the 5-O-methylisoflavone. The kinetic patterns obtained were consistent with an ordered bi bi mechanism, where S-adenosyl-L-methionine is the first substrate to bind to the enzyme and S-adenosyl-L-homocysteine is the final product released. The physiological role of this enzyme is discussed in relation to the biosynthesis of 5-O-methylisoflavones of this tissue.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources