Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2021 May;35(5):580-588.
doi: 10.1007/s12149-021-01601-y. Epub 2021 Mar 1.

Phase I clinical study of NMB58, a novel positron emission tomography (PET)-myocardial perfusion imaging tracer, conducted to evaluate its safety and pharmacokinetics in Japanese healthy adult males

Affiliations
Clinical Trial

Phase I clinical study of NMB58, a novel positron emission tomography (PET)-myocardial perfusion imaging tracer, conducted to evaluate its safety and pharmacokinetics in Japanese healthy adult males

Mirai Kawano et al. Ann Nucl Med. 2021 May.

Abstract

Objectives: NMB58 is a novel positron emission tomography (PET) tracer containing flurpiridaz as an active ingredient and available as a myocardial perfusion imaging tracer that targets mitochondrial complex 1. A phase I clinical study of NMB58 was conducted to evaluate its safety and pharmacokinetics in healthy volunteers.

Methods: Ten healthy Japanese volunteers received bolus injection of NMB58 (111-167 MBq) intravenously and underwent imaging studies at rest on day 1. Of these subjects, 5 (day 2 cohort 1; exercise stress) and 5 (day 2 cohort 2; pharmacological stress) similarly underwent stress imaging studies on day 2. The safety of NMB58 was evaluated through monitoring of signs/symptoms, electrocardiography, vital signs, and laboratory examinations at baseline and several time points during 3 days. Sequential whole-body positron emission tomography-computed tomography (PET/CT) scan data were acquired for up to 5-h post-injection, with venous blood and urine samples collected for up to 8-h post-injection. Based on the results of the biodistribution study, the absorbed radiation dose (Rad) was estimated by the Medical Internal Radiation Dose method.

Results: On day 1, the kidneys were shown to have the highest Rad, followed by the myocardium. On day 2, the myocardium was shown to have the highest Rad, followed by the kidneys. The mean effective doses (EDs) per unit activity administered were 0.021, 0.017 and 0.021 mSv/MBq for overall subjects (day 1), day 2 cohort 1 and day 2 cohort 2, respectively. The estimated exposure dose of NMB58 was similar to or lower than those of radiotracers currently approved for clinical use, including 18F-Fludeoxyglucose. Biodistribution results indicated that NMB58 distributed to the myocardium exhibited high and sustained retention after administration. The cumulative urinary radioactivity excretion rate was shown to be 6.9, 2.3%, and 8.0% of the injected dose in overall subjects (day 1), day 2 cohort 1 and day 2 cohort 2. There were no drug-related adverse events, and the tracer was well tolerated in all subjects.

Conclusions: Based on radiation dosimetry, biodistribution, and safety evaluations, NMB58 was found to be a suitable tracer for clinical use in PET myocardial perfusion imaging during exercise or pharmacological stress.

Keywords: Flurpiridaz; Myocardial perfusion PET imaging; Phase I clinical study.

PubMed Disclaimer

References

    1. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–40. - DOI
    1. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13:24–33. - DOI
    1. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation. 2007;115:1464–80. - DOI
    1. Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. 2013;5:35–46. - DOI
    1. Yalamanchili P, Wexler E, Hayes M, Yu M, Bozek J, Kagan M, et al. Mechanism of uptake and retention of F-18 BMS-747158-02 in cardiomyocytes: a novel PET myocardial imaging agent. J Nucl Cardiol. 2007;14:782–8. - DOI

Publication types

LinkOut - more resources