Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 2;9(3):e24188.
doi: 10.2196/24188.

Human-Computer Agreement of Electrocardiogram Interpretation for Patients Referred to and Declined for Primary Percutaneous Coronary Intervention: Retrospective Data Analysis Study

Affiliations

Human-Computer Agreement of Electrocardiogram Interpretation for Patients Referred to and Declined for Primary Percutaneous Coronary Intervention: Retrospective Data Analysis Study

Aleeha Iftikhar et al. JMIR Med Inform. .

Abstract

Background: When a patient is suspected of having an acute myocardial infarction, they are accepted or declined for primary percutaneous coronary intervention partly based on clinical assessment of their 12-lead electrocardiogram (ECG) and ST-elevation myocardial infarction criteria.

Objective: We retrospectively determined the agreement rate between human (specialists called activator nurses) and computer interpretations of ECGs of patients who were declined for primary percutaneous coronary intervention.

Methods: Various features of patients who were referred for primary percutaneous coronary intervention were analyzed. Both the human and computer ECG interpretations were simplified to either "suggesting" or "not suggesting" acute myocardial infarction to avoid analysis of complex heterogeneous and synonymous diagnostic terms. Analyses, to measure agreement, and logistic regression, to determine if these ECG interpretations (and other variables such as patient age, chest pain) could predict patient mortality, were carried out.

Results: Of a total of 1464 patients referred to and declined for primary percutaneous coronary intervention, 722 (49.3%) computer diagnoses suggested acute myocardial infarction, whereas 634 (43.3%) of the human interpretations suggested acute myocardial infarction (P<.001). The human and computer agreed that there was a possible acute myocardial infarction for 342 out of 1464 (23.3%) patients. However, there was a higher rate of human-computer agreement for patients not having acute myocardial infarctions (450/1464, 30.7%). The overall agreement rate was 54.1% (792/1464). Cohen κ showed poor agreement (κ=0.08, P=.001). Only the age (odds ratio [OR] 1.07, 95% CI 1.05-1.09) and chest pain (OR 0.59, 95% CI 0.39-0.89) independent variables were statistically significant (P=.008) in predicting mortality after 30 days and 1 year. The odds for mortality within 1 year of referral were lower in patients with chest pain compared to those patients without chest pain. A referral being out of hours was a trending variable (OR 1.41, 95% CI 0.95-2.11, P=.09) for predicting the odds of 1-year mortality.

Conclusions: Mortality in patients who were declined for primary percutaneous coronary intervention was higher than the reported mortality for ST-elevation myocardial infarction patients at 1 year. Agreement between computerized and human ECG interpretation is poor, perhaps leading to a high rate of inappropriate referrals. Work is needed to improve computer and human decision making when reading ECGs to ensure that patients are referred to the correct treatment facility for time-critical therapy.

Keywords: ECG interpretation; acute myocardial infarction; agreement between human and computer; diagnostic; electrocardiogram; heart; human-computer; infarction; intervention; primary percutaneous coronary intervention service; scan.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
(a) Activator nurse and (b) computer interpretations of acute myocardial infarction rate by the hour. AMI: acute myocardial infarction; MI: myocardial infarction.
Figure 2
Figure 2
Activator nurse and computer agreement of (a) acute myocardial infarction and (b) not acute myocardial infarction. AMI: acute myocardial infarction; MI: myocardial infarction.
Figure 3
Figure 3
Activator nurse and computer agreement by the hour.
Figure 4
Figure 4
(a) Activator nurse interpretation suggesting acute myocardial infarction and computer disagreed; (b) computer interpretation suggesting acute myocardial infarction and activator nurse disagreed.
Figure 5
Figure 5
Proportion of patients with chest pain by the hour.

Similar articles

References

    1. Heart statistics. British Heart Foundation. [2020-05-01]. https://www.bhf.org.uk/what-we-do/our-research/heart-statistics.
    1. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, Jaffe AS, Jneid H, Kelly RF, Kontos MC, Levine GN, Liebson PR, Mukherjee D, Peterson ED, Sabatine MA, Smalling RW, Zieman SJ, ACC/AHA Task Force Members 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014 Dec 23;130(25):e344–426. doi: 10.1161/CIR.0000000000000134. - DOI - PubMed
    1. Torres M, Moayedi S. Evaluation of the acutely dyspneic elderly patient. Clin Geriatr Med. 2007 May;23(2):307–25, vi. doi: 10.1016/j.cger.2007.01.007. - DOI - PubMed
    1. Diagnosis-heart attack. UK National Health Service. [2020-04-02]. https://www.nhs.uk/conditions/heart-attack/diagnosis/
    1. Verbeek PR, Ryan D, Turner L, Craig AM. Serial prehospital 12-lead electrocardiograms increase identification of ST-segment elevation myocardial infarction. Prehosp Emerg Care. 2012 Jan 05;16(1):109–14. doi: 10.3109/10903127.2011.614045. - DOI - PubMed

LinkOut - more resources