Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jul 15;27(14):3825-3833.
doi: 10.1158/1078-0432.CCR-20-4712. Epub 2021 Mar 2.

Refining the Molecular Framework for Pancreatic Cancer with Single-cell and Spatial Technologies

Affiliations
Review

Refining the Molecular Framework for Pancreatic Cancer with Single-cell and Spatial Technologies

Jimmy A Guo et al. Clin Cancer Res. .

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a treatment-refractory malignancy in urgent need of a molecular framework for guiding therapeutic strategies. Bulk transcriptomic efforts over the past decade have yielded two broad consensus subtypes: classical pancreatic/epithelial versus basal-like/squamous/quasi-mesenchymal. Although this binary classification enables prognostic stratification, it does not currently inform the administration of treatments uniquely sensitive to either subtype. Furthermore, bulk mRNA studies are challenged by distinguishing contributions from the neoplastic compartment versus other cell types in the microenvironment, which is accentuated in PDAC given that neoplastic cellularity can be low. The application of single-cell transcriptomics to pancreatic tumors has generally lagged behind other cancer types due in part to the difficulty of extracting high-quality RNA from enzymatically degradative tissue, but emerging studies have and will continue to shed light on intratumoral heterogeneity, malignant-stromal interactions, and subtle transcriptional programs previously obscured at the bulk level. In conjunction with insights provided by single-cell/nucleus dissociative techniques, spatially resolved technologies should also facilitate the contextualization of gene programs and inferred cell-cell interactions within the tumor architecture. Finally, given that patients often receive neoadjuvant chemotherapy and/or chemoradiotherapy even in resectable disease, deciphering the gene programs enriched in or induced by cytotoxic therapy will be crucial for developing insights into complementary treatments aimed at eradicating residual cancer cells. Taken together, single-cell and spatial technologies provide an unprecedented opportunity to refine the foundations laid by prior bulk molecular studies and significantly augment precision oncology efforts in pancreatic cancer.

PubMed Disclaimer

Conflict of interest statement

Disclosures

D.T.T. has received consulting fees from ROME Therapeutics, Foundation Medicine, Inc., NanoString Technologies, EMD Millipore Sigma, Pfizer, and Third Rock Ventures that are not related to this work. D.T.T. is a founder and has equity in ROME Therapeutics, PanTher Therapeutics and TellBio, Inc., which is not related to this work. D.T.T. receives research support from ACD-Biotechne, PureTech Health LLC, and Ribon Therapeutics, which was not used in this work. D.T.T.’s interests were reviewed and are managed by Massachusetts General Hospital and Mass General Brigham in accordance with their conflict of interest policies. All other authors declare no competing interests.

Figures

Figure 1.
Figure 1.
Schematic diagram of potential transcriptomic subtype-dependent response to therapy, associations among different cell types, and treatment-induced plasticity.

References

    1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014; 74:2913–21. - PubMed
    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70:7–30. - PubMed
    1. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N Engl J Med 2011; 364:1817–25. - PubMed
    1. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 2013; 369:1691–703. - PMC - PubMed
    1. Hu ZI, Shia J, Stadler ZK, Varghese AM, Capanu M, Salo-Mullen E, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: Challenges and recommendations. Clin Cancer Res 2018; 24:1326–1336. - PMC - PubMed

Publication types

MeSH terms