Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics
- PMID: 33653941
- PMCID: PMC8546986
- DOI: 10.1128/mSystems.00912-20
Air versus Water Chilling of Chicken: a Pilot Study of Quality, Shelf-Life, Microbial Ecology, and Economics
Abstract
The United States' large-scale poultry meat industry is energy and water intensive, and opportunities may exist to improve sustainability during the broiler chilling process. By USDA regulation, after harvest the internal temperature of the chicken must be reduced to 40°F or less within 16 h to inhibit bacterial growth that would otherwise compromise the safety of the product. This step is accomplished most commonly by water immersion chilling in the United States, while air chilling methods dominate other global markets. A comprehensive understanding of the differences between these chilling methods is lacking. Therefore, we assessed the meat quality, shelf-life, microbial ecology, and techno-economic impacts of chilling methods on chicken broilers in a university meat laboratory setting. We discovered that air chilling methods resulted in superior chicken odor and shelf-life, especially prior to 14 days of dark storage. Moreover, we demonstrated that air chilling resulted in a more diverse microbiome that we hypothesize may delay the dominance of the spoilage organism Pseudomonas Finally, a techno-economic analysis highlighted potential economic advantages to air chilling compared to water chilling in facility locations where water costs are a more significant factor than energy costs.IMPORTANCE As the poultry industry works to become more sustainable and to reduce the volume of food waste, it is critical to consider points in the processing system that can be altered to make the process more efficient. In this study, we demonstrate that the method used during chilling (air versus water chilling) influences the final product microbial community, quality, and physiochemistry. Notably, the use of air chilling appears to delay the bloom of Pseudomonas spp. that are the primary spoilers in packaged meat products. By using air chilling to reduce carcass temperatures instead of water chilling, producers may extend the time until spoilage of the products and, depending on the cost of water in the area, may have economic and sustainability advantages. As a next step, a similar experiment should be done in an industrial setting to confirm these results generated in a small-scale university lab facility.
Keywords: 16S rRNA; 16S rRNA gene; chicken; chilling methods; energy; meat; microbiome; pseudomonas; shelf life; spoilage; techno-economics; technoeconomics.
Copyright © 2021 Belk et al.
Figures





References
-
- Putman B, Thoma G, Burek J, Matlock M. 2017. A retrospective analysis of the United States poultry industry: 1965 compared with 2010. Agric Syst 157:107–117. doi: 10.1016/j.agsy.2017.07.008. - DOI
-
- US Department of Agriculture. 2020. Charts and maps − poultry. National Agricultural Statistics Service, US Department of Agriculture, Washington, DC. https://www.nass.usda.gov/Charts_and_Maps/Poultry/index.php. Accessed 23 April 2020.
-
- Food and Agriculture Organization of the United Nations. 2019. Meat market review: overview of global meat market developments in 2018. Food and Agriculture Organization of the United Nations, Rome, Italy.
-
- Zhuang H, Bowker BC, Berrang ME, Meinersmann RJ, Buhr RJ. 2017. Impact of eliminating the carcass chilling step in the production of pre-cooked chicken breast meat. J Appl Poult Res 26:431–436. doi: 10.3382/japr/pfx012. - DOI
-
- Sams AR, Alvarado C, Owens CM (ed). 2001. Poultry meat processing, vol 7. CRC Press, Boca Raton, FL.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous