Stress-induced amorphization triggers deformation in the lithospheric mantle
- PMID: 33658696
- DOI: 10.1038/s41586-021-03238-3
Stress-induced amorphization triggers deformation in the lithospheric mantle
Abstract
The mechanical properties of olivine-rich rocks are key to determining the mechanical coupling between Earth's lithosphere and asthenosphere. In crystalline materials, the motion of crystal defects is fundamental to plastic flow1-4. However, because the main constituent of olivine-rich rocks does not have enough slip systems, additional deformation mechanisms are needed to satisfy strain conditions. Experimental studies have suggested a non-Newtonian, grain-size-sensitive mechanism in olivine involving grain-boundary sliding5,6. However, very few microstructural investigations have been conducted on grain-boundary sliding, and there is no consensus on whether a single or multiple physical mechanisms are at play. Most importantly, there are no theoretical frameworks for incorporating the mechanics of grain boundaries in polycrystalline plasticity models. Here we identify a mechanism for deformation at grain boundaries in olivine-rich rocks. We show that, in forsterite, amorphization takes place at grain boundaries under stress and that the onset of ductility of olivine-rich rocks is due to the activation of grain-boundary mobility in these amorphous layers. This mechanism could trigger plastic processes in the deep Earth, where high-stress conditions are encountered (for example, at the brittle-plastic transition). Our proposed mechanism is especially relevant at the lithosphere-asthenosphere boundary, where olivine reaches the glass transition temperature, triggering a decrease in its viscosity and thus promoting grain-boundary sliding.
References
-
- Carter, N. L. & Ave’Lallemant, H. G. High temperature flow of dunite and peridotite. Geol. Soc. Am. Bull. 81, 2181–2202 (1970). - DOI
-
- Kocks, U. F., Argon, A. S. & Ashby, M. F. in Thermodynamics and Kinetics of Slip (eds Kocks, U. F. et al.) 110–271 (Pergamon Press, 1975).
-
- Ashby, M. F. & Verrall, R. A. Micromechanisms of flow and fracture, and their relevance to the rheology of the upper mantle. Phil. Trans. R. Soc. Lond. A 288, 59–95 (1978). - DOI
-
- Marquardt, K. & Faul, U. K. The structure and composition of olivine grain boundaries: 40 years of studies, status and current developments. Phys. Chem. Miner. 45, 139–172 (2018). - DOI
-
- Hirth, G. & Kohlstedt, D. L. Experimental constraints on the dynamics of the partially molten upper mantle: 2. Deformation in the dislocation creep regime. J. Geophys. Res. 100, 15441–15449 (1995). - DOI
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources

