An Antioxidant Nanoparticle Enhances Exercise Performance in Rat High-intensity Running Models
- PMID: 33660940
- DOI: 10.1002/adhm.202100067
An Antioxidant Nanoparticle Enhances Exercise Performance in Rat High-intensity Running Models
Abstract
Although the adverse effects of excessively generated reactive oxygen species (ROS) on the body during aerobic exercise have been debated, there are few reports on the remarkable effects of the application of conventional antioxidants on exercise performance. The conventional antioxidants could not enhance exercise performance due to their rapid excretion from the body and serious adverse effects on the cellular respiratory system. In this study, impact of the original antioxidant self-assembling nanoparticle, redox-active nanoparticle (RNP), is investigated on the exercise performance of rats during running experiments. With an increase in the dose of the administered RNP, the all-out time of the rat running extends in a dose-dependent manner. In contrast, with an increase in the dose of the low-molecular-weight (LMW) antioxidant, the all-out running time of the rats decreases. The control group and LMW antioxidant treated group decrease in the number of red blood cells (RBCs) and increase oxidative stress after running. However, the RNP group maintains a similar RBC level and oxidative stress as that of the sedentary group. The results suggest that RNP, which shows long-blood circulation without disturbance of mitohormesis, effectively removes ROS from the bloodstream to suppresses RBC oxidative stress and damage, thus improving exercise performance.
Keywords: Fenton reaction; exercise performance; oxidative stress; polymeric nanoparticles; reactive oxygen species; red blood cells; self-assembling antioxidants.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Design of Antioxidant Nanoparticle, which Selectively Locates and Scavenges Reactive Oxygen Species in the Gastrointestinal Tract, Increasing The Running Time of Mice.Adv Sci (Weinh). 2023 Sep;10(27):e2301159. doi: 10.1002/advs.202301159. Epub 2023 Aug 1. Adv Sci (Weinh). 2023. PMID: 37526346 Free PMC article.
-
Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos.Acta Biomater. 2023 Mar 15;159:367-381. doi: 10.1016/j.actbio.2023.01.012. Epub 2023 Jan 12. Acta Biomater. 2023. PMID: 36640953
-
Self-Assembling Antioxidants for Ischemia-Reperfusion Injuries.Antioxid Redox Signal. 2022 Jan;36(1-3):70-80. doi: 10.1089/ars.2021.0103. Epub 2021 Sep 7. Antioxid Redox Signal. 2022. PMID: 34074133 Review.
-
Evaluation of the Toxicity and Antioxidant Activity of Redox Nanoparticles in Zebrafish (Danio rerio) Embryos.Mol Pharm. 2016 Sep 6;13(9):3091-7. doi: 10.1021/acs.molpharmaceut.6b00225. Epub 2016 Jul 25. Mol Pharm. 2016. PMID: 27186993
-
Creatine Supplementation, Physical Exercise and Oxidative Stress Markers: A Review of the Mechanisms and Effectiveness.Nutrients. 2021 Mar 6;13(3):869. doi: 10.3390/nu13030869. Nutrients. 2021. PMID: 33800880 Free PMC article. Review.
Cited by
-
Effects of voluntary and forced physical exercise on the retinal health of aging Wistar rats.Geroscience. 2024 Oct;46(5):4707-4728. doi: 10.1007/s11357-024-01208-x. Epub 2024 May 25. Geroscience. 2024. PMID: 38795184 Free PMC article.
-
Design of Antioxidant Nanoparticle, which Selectively Locates and Scavenges Reactive Oxygen Species in the Gastrointestinal Tract, Increasing The Running Time of Mice.Adv Sci (Weinh). 2023 Sep;10(27):e2301159. doi: 10.1002/advs.202301159. Epub 2023 Aug 1. Adv Sci (Weinh). 2023. PMID: 37526346 Free PMC article.
-
Could nanotechnology improve exercise performance? Evidence from animal studies.Braz J Med Biol Res. 2024 Apr 19;57:e13360. doi: 10.1590/1414-431X2024e13360. eCollection 2024. Braz J Med Biol Res. 2024. PMID: 38656076 Free PMC article. Review.
References
-
- K. Tokinoya, K. Ishikura, S. G. Ra, K. Ebina, S. Miyakawa, H. Ohmori, J. Exerc. Sci. Fit. 2020, 18, 115.
-
- T. C. Spada, J. M. R. D. Silva, L. S. Francisco, L. J. Marçal, L. Antonangelo, D. M. T. Zanetta, L. Yu, E. A. Burdmann, PLoS One 2018, 13, e0205791.
-
- S. K. Powers, M. J. Jackson, Physiol. Rev. 2008, 88, 1243.
-
- E. Barbieri, P. Sestili, J. Signal Transduction 2012, 2012, 1.
-
- J. J. Wan, Z. Qin, P. Y. Wang, Y. Sun, X. Liu, Exp. Mol. Med. 2017, 49, e384.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources