Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Apr 1:124:385-402.
doi: 10.1016/j.wasman.2021.02.029. Epub 2021 Mar 2.

Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review

Affiliations
Review

Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review

Ankun Xu et al. Waste Manag. .

Abstract

Artificial neural networks (ANNs) have recently attracted significant attention in environmental areas because of their great self-learning capability and good accuracy in mapping complex nonlinear relationships. These properties of ANNs benefit their application in solving different solid waste-related issues. However, the configurations, including ANN framework, algorithm, data set partition, input parameters, hidden layer, and performance evaluation, vary and have not reached a consensus among relevant studies. To address the current state of the art of ANN application in the solid waste field and identify the commonalities of ANNs, this critical review was conducted by focusing on a modeling perspective and using 177 relevant papers published over the last decade (2010-2020). We classified the reviewed studies into four categories in terms of research scales. ANNs were found to be applied widely in waste generation and technological parameter prediction and proven effective in solving meso-microscale and microscale issues, including waste conversion, emissions, and microbial and dynamic processes. Given the difficulty of data collection in many solid waste-related issues, most studies included a data size of 101-150. For mathematical optimization, dividing the data into training-validation-test sets is preferable, and the training set is supposed to account for ~70%. A single hidden layer is usually sufficient, and the optimal numbers of hidden layer nodes most likely range from 4 to 20. This review is supposed to contribute basic and comprehensive knowledge to the researchers in general waste management and specialized ANN study on solid waste-related issues.

Keywords: Feedforward neural network; Model configuration; Prediction; Solid waste; artificial neural network (ANN).

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources