Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 4;17(1):102.
doi: 10.1186/s12917-021-02800-5.

Health assessment of wild speckled dwarf tortoises, CHERSOBIUS SIGNATUS

Affiliations

Health assessment of wild speckled dwarf tortoises, CHERSOBIUS SIGNATUS

Livio Galosi et al. BMC Vet Res. .

Abstract

Background: In free-ranging reptile populations, bacterial, fungal, viral and parasitic pathogens may affect hosts through impairment in movements, thermoregulation, reproduction, survival, and population dynamics. The speckled dwarf tortoise (Chersobius [Homopus] signatus) is a threatened species that is mostly restricted to the Succulent Karoo biome in South Africa, and little information on pathogens of this species is available yet. We derived baseline parameters for five males and five females that were captured to genetically enhance a conservation breeding program in Europe. Upon collection of the tortoises, ticks were removed and identified. Immediately upon arrival in Europe, ocular, nasal, oral and cloacal swabs were taken for viral, bacteriological and mycological examinations. Fecal samples were collected before and 1 month after fenbendazole treatment, and analyzed for parasites. A panel of PCR, aiming to detect herpesviruses, adenoviruses and iridoviruses, was carried out.

Results: Samples were negative for viruses, while bacteriological examination yielded detectable growth in 82.5% of the swabs with a mean load of 16 × 107 ± 61 × 108 colony forming units (CFU) per swab, representing 34 bacterial species. Cloacal and oral swabs yielded higher detectable growth loads than nasal and ocular swabs, but no differences between sexes were observed. Fungi and yeasts (mean load 5 × 103 ± 13 × 103 CFU/swab) were detected in 25% of the swabs. All pre-treatment fecal samples were positive for oxyurid eggs, ranging from 200 to 2400 eggs per gram of feces, whereas after the treatment a significantly reduced egg count (90-100% reduction) was found in seven out of 10 individuals. One remaining individual showed 29% reduction, and two others had increased egg counts. In five tortoises, Nycthocterus spp. and coccidian oocysts were also identified. Soft ticks were identified as Ornithodoros savignyi.

Conclusions: Our baseline data from clinically healthy individuals will help future studies to interpret prevalences of microorganisms in speckled dwarf tortoise populations. The study population did not appear immediately threatened by current parasite presence.

Keywords: Chersobius [Homopus] signatus; Health assessment; Reptile; Tortoise; Wildlife.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest. The funder had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Fig. 1
Fig. 1
Bacterial frequencies (%) observed in five male and five female speckled dwarf tortoises (Chersobius [Homopus] signatus) in relation to anatomical district and Gram affinity. [*: χ2 = 8.74, P = 0.017]
Fig. 2
Fig. 2
Bacterial frequencies (%) observed in five male and five female speckled dwarf tortoises (Chersobius [Homopus] signatus) in relation to sex and anatomical district. [*1: χ2 = 4.37, P = 0.034; *2: χ2 = 8.60 P = 0.003; *3: χ2 = 9.92, P = 0.002; *4: χ2 = 5.53, P = 0.019; *5: χ2 = 19.89, P < 104; *6: χ2 = 10.29, P = 0.001]
Fig. 3
Fig. 3
Parasites identified in 10 speckled dwarf tortoises (Chersobius [Homopus] signatus). a Ornithodoros savignyi nymph (scale bar 0.45 mm); b) Ornithodoros savignyi larvae (scale bar 0.4 mm); c) Oxyurid egg (scale bar 35 μm)

References

    1. Jacobson ER. Infectious diseases and pathology of reptiles. Boca Raton, Florida, USA: CRC Press; 2007.
    1. Jacobson ER, Brown MB, Wendland LD, Brown DR, Klein PA, Christopher MM, Berry KH. Mycoplasmosis and upper respiratory tract disease of tortoises: a review and update. Vet J. 2014;201(3):257–264. doi: 10.1016/j.tvjl.2014.05.039. - DOI - PubMed
    1. McGuire JL, Smith LL, Guyer C, Yabsley MJ. Effects of mycoplasmal upper-respiratory-tract disease on movement and thermoregulatory behavior of gopher tortoises (Gopherus polyphemus) in Georgia. Usa J Wild Dis. 2014;50:745–756. doi: 10.7589/2013-11-306. - DOI - PubMed
    1. Fournié G, Goodman SJ, Cruz M, Cede V, Vélez A, Pati L, Millins C, Gibbons LM, Fox MT, Cunning AA. Biogeography of parasitic nematode communities in the Galápagos Giant tortoise: implications for conservation management. PLoS One. 2015;10(9):e0135684. doi: 10.1371/journal.pone.0135684. - DOI - PMC - PubMed
    1. Thompson RCA, Lymbery AJ, Smith A. Parasites, emerging diseases and wildlife conservation. Int J Parasitol. 2010;40:1163–1170. doi: 10.1016/j.ijpara.2010.04.009. - DOI - PubMed