Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Feb 5;6(8):2546-2556.
doi: 10.1016/j.bioactmat.2021.01.025. eCollection 2021 Aug.

Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity

Affiliations

Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO4/H2O2 on implants for improved surface hemocompatibility and antibacterial activity

Zhongqiang Zhu et al. Bioact Mater. .

Erratum in

Abstract

Implanted biomaterials such as medical catheters are prone to be adhered by proteins, platelets and bacteria due to their surface hydrophobicity characteristics, and then induce related infections and thrombosis. Hence, the development of a versatile strategy to endow surfaces with antibacterial and antifouling functions is particularly significant for blood-contacting materials. In this work, CuSO4/H2O2 was used to trigger polydopamine (PDA) and poly-(sulfobetaine methacrylate) (PSBMA) co-deposition process to endow polyurethane (PU) antibacterial and antifouling surface (PU/PDA(Cu)/PSBMA). The zwitterions contained in the PU/PDA(Cu)/PSBMA coating can significantly improve surface wettability to reduce protein adsorption, thereby improving its blood compatibility. In addition, the copper ions released from the metal-phenolic networks (MPNs) imparted them more than 90% antibacterial activity against E. coli and S. aureus. Notably, PU/PDA(Cu)/PSBMA also exhibits excellent performance in vivo mouse catheter-related infections models. Thus, the PU/PDA(Cu)/PSBMA has great application potential for developing multifunctional surface coatings for blood-contacting materials so as to improve antibacterial and anticoagulant properties.

Keywords: Antibacterial; Copper ions; Hemocompatibility; Surface modification; Zwitterionic polymer.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Image 1
Graphical abstract
Scheme 1
Scheme 1
Schematic of the preparation of the PU/PDA(Cu)/PSBMA. (a) (i) The chemical structure of PDA and copper ion forming MPNs. (ii, iii) The mechanism of the DA-triggered polymerization of SBMA. (b) PU/PDA(Cu)/PSBMA exhibits both antibacterial and antifouling properties.
Fig. 1
Fig. 1
(a) Schematic illustration of the preparation of PU/PDA(Cu)/PSBMA. (b) 1H NMR spectra of PSBMA in D2O. (c) Contact angle measurement of the PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA coating. (d) XPS of the PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA coating. (e) High Cu 2p scan of the PU/PDA(Cu)/PSBMA coating. (f) SEM images of the PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA coating. Scale bar: 1 μm.
Fig. 2
Fig. 2
Thickness change rate of PU/PDA(Cu)/PSBMA immersed in different PBS buffer solutions ((a) pH = 5.5, (b) pH = 7.2, (c) pH = 8.5) on day 0, 1, 3 and 7. UV–vis spectra of different eluents ((d) pH = 5.5, (e) pH = 7.2, (f) pH = 8.5) of PU/PDA(Cu)/PSBMA on day 0, 1, 3 and 7. Photographs of PU/PDA(Cu)/PSBMA catheters immersed in different PBS buffer solutions ((g) pH = 5.5, (h) pH = 7.2, (i) pH = 8.5) on day 0, 1, 3 and 7.
Fig. 3
Fig. 3
Relative protein adsorption (a) Fg and (b) BSA on the surface of PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA. (c) Fluorescence microscopy images of FL-BSA adsorption on the surface of PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA. Scale bar: 20 μm. (d) Images of hemolysis analysis of positive control (I), PU (II), PU/PDA (III), PU/PDA/PSBMA (IV), PU/PDA(Cu) (V), PU/PDA(Cu)/PSBMA (VI) and negative control (VII). (e) Hemolysis rate of PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA. (f) Platelet adhesion on the PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA surfaces observed with SEM. Scale bar: 20 μm.
Fig. 4
Fig. 4
(a) Agar plate photographs, (b) relative bacterial numbers and (c) live/dead assay of E. coli and S. aureus after incubation with PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA, respectively. Scale bar: 20 μm. (***P < 0.001).
Fig. 5
Fig. 5
SEM images showing the anti-adhesive properties of PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA in the presence of (a) E. coli and (b) S. aureus at different magnifications (upper panel, 5 k, Scale bar: 10 μm; lower panel, 20 k, Scale bar: 2 μm) (the white arrow indicates dead bacteria). Bacterial density adhering to the surface of PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA in the presence of (c) E. coli and (d) S. aureus (**p < 0.01, ***p < 0.001).
Fig. 6
Fig. 6
(a) Fluorescent images of LIVE/DEAD staining (b) cell viability on HUVECs after incubation with PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA for 24 h. (c) Fluorescent images of LIVE/DEAD staining (d) cell viability on HUVECs after incubation with PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA for 48 h. Scale bar: 20 μm.
Fig. 7
Fig. 7
(a) The photographs of PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA implanted with mice infected with S. aureus (the red arrows indicated the pus). (b) LB agar plates of S. aureus number in pus upon treatment with PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA, respectively. (c) HE staining of the surrounding connective tissues upon treatment with PU, PU/PDA, PU/PDA/PSBMA, PU/PDA(Cu) and PU/PDA(Cu)/PSBMA, respectively., respectively. Scale bar: 50 μm.

References

    1. Noimark S., Dunnill C.W., Wilson M., Parkin I.P. The role of surfaces in catheter-associated infections. Chem. Soc. Rev. 2009;38(12):3435–3448. - PubMed
    1. Arciola C.R., Campoccia D., Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16(7):397–409. - PubMed
    1. Parienti J.-J., Mongardon N., Megarbane B., Mira J.-P., Kalfon P., Gros A., Marque S., Thuong M., Pottier V., Ramakers M., Savary B., Seguin A., Valette X., Terzi N., Sauneuf B., Cattoir V., Mermel L.A., du Cheyron D., Grp S.S. Intravascular complications of central venous catheterization by insertion site. N. Engl. J. Med. 2015;373(13):1220–1229. - PubMed
    1. Gbyli R., Mercaldi A., Sundaram H., Amoako K.A. Achieving totally local anticoagulation on blood contacting devices. Advanced Materials Interfaces. 2018;5(4):1700954.
    1. Gorbet M.B., Sefton M.V. Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials. 2004;25(26):5681–5703. - PubMed