Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Feb 28;22(5):2439.
doi: 10.3390/ijms22052439.

DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview

Affiliations
Review

DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview

Baptiste Balança et al. Int J Mol Sci. .

Abstract

Early or primary injury due to brain aggression, such as mechanical trauma, hemorrhage or is-chemia, triggers the release of damage-associated molecular patterns (DAMPs) in the extracellular space. Some DAMPs, such as S100B, participate in the regulation of cell growth and survival but may also trigger cellular damage as their concentration increases in the extracellular space. When DAMPs bind to pattern-recognition receptors, such as the receptor of advanced glycation end-products (RAGE), they lead to non-infectious inflammation that will contribute to necrotic cell clearance but may also worsen brain injury. In this narrative review, we describe the role and ki-netics of DAMPs and RAGE at the acute phase of brain injury. We searched the MEDLINE database for "DAMPs" or "RAGE" or "S100B" and "traumatic brain injury" or "subarachnoid hemorrhage" or "stroke". We selected original articles reporting data on acute brain injury pathophysiology, from which we describe DAMPs release and clearance upon acute brain injury, and the implication of RAGE in the development of brain injury. We will also discuss the clinical strategies that emerge from this overview in terms of biomarkers and therapeutic perspectives.

Keywords: acute brain injuries; biomarkers; damage-associated molecular pattern molecules; receptor for advanced glycation end-products.

PubMed Disclaimer

Conflict of interest statement

B.B. was invited by ROCHE Diagnostics (France) as a member of the S100B in the intensive care unit expert board. The other authors declare no conflict of interest. ROCHE Diagnostics had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Damage-associated molecular patterns (DAMPs) and pattern-recognition receptors (PRRs) changes at the acute phase of brain injury. (A) Morphological changes of neurons (grey), astrocytes (green), microglial and infiltrating leukocytes (blue), and DAMPs release (orange); (B) local field potential (LFP) and extracellular KCl recordings during the spreading depolarization triggered by the primary injury: the direct current (DC; 0–0.5Hz) shift is associated with a decrease of neuronal activity (AC; >0.5 Hz) and a KCl release; (C) Pattern-recognition receptors (PRRs) activation pathways; (D) kinetics of DAMPs and PRR expression as well as the course of cell death mechanisms. DAMPs: Damage-associated molecular patterns; IL: Interleukin; iNOS: inducible nitric oxide synthase; LFP: local field potential; MLKL: Mixed-lineage kinase domain-like pseudokinase; MyD88: Myeloid differentiation primary response 88; NFκB: nuclear factor-kappa B; RAGE: Receptor for advanced glycation end-products; RIPK1: receptor-interacting protein kinase 1; TLR: Toll-like receptor; TNF: Tumor necrosis factor; TNFR1: Tumor necrosis factor receptor 1.

Similar articles

Cited by

References

    1. Kigerl K.A., de Rivero Vaccari J.P., Dietrich W.D., Popovich P.G., Keane R.W. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 2014;258:5–16. doi: 10.1016/j.expneurol.2014.01.001. - DOI - PMC - PubMed
    1. Kono H., Rock K.L. How dying cells alert the immune system to danger. Nat. Rev. Immunol. 2008;8:279–289. doi: 10.1038/nri2215. - DOI - PMC - PubMed
    1. Canton J., Neculai D., Grinstein S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 2013;13:621–634. doi: 10.1038/nri3515. - DOI - PubMed
    1. Gao T.-L., Yuan X.-T., Yang D., Dai H.-L., Wang W.-J., Peng X., Shao H.-J., Jin Z.-F., Fu Z.-J. Expression of HMGB1 and RAGE in rat and human brains after traumatic brain injury. J. Trauma Acute Care Surg. 2012;72:643–649. doi: 10.1097/TA.0b013e31823c54a6. - DOI - PubMed
    1. Khan M.A., Schultz S., Othman A., Fleming T., Lebrón-Galán R., Rades D., Clemente D., Nawroth P.P., Schwaninger M. Hyperglycemia in Stroke Impairs Polarization of Monocytes/Macrophages to a Protective Noninflammatory Cell Type. J. Neurosci. 2016;36:9313–9325. doi: 10.1523/JNEUROSCI.0473-16.2016. - DOI - PMC - PubMed

LinkOut - more resources