Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro
- PMID: 33672333
- PMCID: PMC7926471
- DOI: 10.3390/v13020354
Resveratrol Inhibits HCoV-229E and SARS-CoV-2 Coronavirus Replication In Vitro
Abstract
A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China at the end of 2019 causing a large global outbreak. As treatments are of the utmost importance, drug repurposing embodies a rich and rapid drug discovery landscape, where candidate drug compounds could be identified and optimized. To this end, we tested seven compounds for their ability to reduce replication of human coronavirus (HCoV)-229E, another member of the coronavirus family. Among these seven drugs tested, four of them, namely rapamycin, disulfiram, loperamide and valproic acid, were highly cytotoxic and did not warrant further testing. In contrast, we observed a reduction of the viral titer by 80% with resveratrol (50% effective concentration (EC50) = 4.6 µM) and lopinavir/ritonavir (EC50 = 8.8 µM) and by 60% with chloroquine (EC50 = 5 µM) with very limited cytotoxicity. Among these three drugs, resveratrol was less cytotoxic (cytotoxic concentration 50 (CC50) = 210 µM) than lopinavir/ritonavir (CC50 = 102 µM) and chloroquine (CC50 = 67 µM). Thus, among the seven drugs tested against HCoV-229E, resveratrol demonstrated the optimal antiviral response with low cytotoxicity with a selectivity index (SI) of 45.65. Similarly, among the three drugs with an anti-HCoV-229E activity, namely lopinavir/ritonavir, chloroquine and resveratrol, only the latter showed a reduction of the viral titer on SARS-CoV-2 with reduced cytotoxicity. This opens the door to further evaluation to fight Covid-19.
Keywords: HCoV-229E; SARS-CoV-2; coronavirus; resveratrol; viral inhibition.
Conflict of interest statement
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
Figures




References
-
- Chan J.F.-W., Kok K.-H., Zhu Z., Chu H., To K.K.-W., Yuan S., Yuen K.-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902. - DOI - PMC - PubMed
-
- Van der Hoek L. Human coronaviruses: What do they cause? Antivir. Ther. 2007;12:651–658. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous