Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data
- PMID: 33673721
- PMCID: PMC7997275
- DOI: 10.3390/genes12030352
Temporal Dynamic Methods for Bulk RNA-Seq Time Series Data
Abstract
Dynamic studies in time course experimental designs and clinical approaches have been widely used by the biomedical community. These applications are particularly relevant in stimuli-response models under environmental conditions, characterization of gradient biological processes in developmental biology, identification of therapeutic effects in clinical trials, disease progressive models, cell-cycle, and circadian periodicity. Despite their feasibility and popularity, sophisticated dynamic methods that are well validated in large-scale comparative studies, in terms of statistical and computational rigor, are less benchmarked, comparing to their static counterparts. To date, a number of novel methods in bulk RNA-Seq data have been developed for the various time-dependent stimuli, circadian rhythms, cell-lineage in differentiation, and disease progression. Here, we comprehensively review a key set of representative dynamic strategies and discuss current issues associated with the detection of dynamically changing genes. We also provide recommendations for future directions for studying non-periodical, periodical time course data, and meta-dynamic datasets.
Keywords: RNA-Seq; deep machine learning; differential expression analyses; disease progression; meta dynamics; temporal dynamic methods; time series; unsupervised clustering.
Conflict of interest statement
The authors have no conflict of interest to disclose.
Figures
Similar articles
-
Single-cell RNA-seq clustering: datasets, models, and algorithms.RNA Biol. 2020 Jun;17(6):765-783. doi: 10.1080/15476286.2020.1728961. Epub 2020 Mar 1. RNA Biol. 2020. PMID: 32116127 Free PMC article.
-
A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data.RNA. 2020 Oct;26(10):1303-1319. doi: 10.1261/rna.074427.119. Epub 2020 Jun 12. RNA. 2020. PMID: 32532794 Free PMC article.
-
Consensus clustering of single-cell RNA-seq data by enhancing network affinity.Brief Bioinform. 2021 Nov 5;22(6):bbab236. doi: 10.1093/bib/bbab236. Brief Bioinform. 2021. PMID: 34160582 Free PMC article.
-
Goals and approaches for each processing step for single-cell RNA sequencing data.Brief Bioinform. 2021 Jul 20;22(4):bbaa314. doi: 10.1093/bib/bbaa314. Brief Bioinform. 2021. PMID: 33316046 Review.
-
Applications of single-cell and bulk RNA sequencing in onco-immunology.Eur J Cancer. 2021 May;149:193-210. doi: 10.1016/j.ejca.2021.03.005. Epub 2021 Apr 15. Eur J Cancer. 2021. PMID: 33866228 Review.
Cited by
-
Dynamics in zebrafish development define transcriptomic specificity after angiogenesis inhibitor exposure.Arch Toxicol. 2025 Apr;99(4):1561-1578. doi: 10.1007/s00204-024-03944-7. Epub 2025 Jan 9. Arch Toxicol. 2025. PMID: 39786591 Free PMC article.
-
Time-Series Transcriptomic Analysis of Contrasting Rice Materials under Heat Stress Reveals a Faster Response in the Tolerant Cultivar.Int J Mol Sci. 2023 May 28;24(11):9408. doi: 10.3390/ijms24119408. Int J Mol Sci. 2023. PMID: 37298358 Free PMC article.
-
Prediction of Red Blood Cell Demand for Pediatric Patients Using a Time-Series Model: A Single-Center Study in China.Front Med (Lausanne). 2022 May 19;9:706284. doi: 10.3389/fmed.2022.706284. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35665347 Free PMC article.
-
Integration of segmented regression analysis with weighted gene correlation network analysis identifies genes whose expression is remodeled throughout physiological aging in mouse tissues.Aging (Albany NY). 2021 Jul 29;13(14):18150-18190. doi: 10.18632/aging.203379. Epub 2021 Jul 29. Aging (Albany NY). 2021. PMID: 34330884 Free PMC article.
-
A simple guide to de novo transcriptome assembly and annotation.Brief Bioinform. 2022 Mar 10;23(2):bbab563. doi: 10.1093/bib/bbab563. Brief Bioinform. 2022. PMID: 35076693 Free PMC article. Review.
References
-
- Jovanovic M., Rooney M.S., Mertins P., Przybylski D., Chevrier N., Satija R., Rodriguez E.H., Fields A.P., Schwartz S., Raychowdhury R., et al. Immunogenetics. Dynamic profiling of the protein life cycle in response to pathogens. Science. 2015;347:1259038. doi: 10.1126/science.1259038. - DOI - PMC - PubMed
-
- Long M.D., Singh P.K., Russell J.R., Llimos G., Rosario S., Rizvi A., van den Berg P.R., Kirk J., Sucheston-Campbell L.E., Smiraglia D.J., et al. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression. Oncogene. 2019;38:421–444. doi: 10.1038/s41388-018-0450-6. - DOI - PMC - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources