A Multichannel Ca2+ Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy
- PMID: 33675268
- DOI: 10.1002/adma.202007426
A Multichannel Ca2+ Nanomodulator for Multilevel Mitochondrial Destruction-Mediated Cancer Therapy
Abstract
Subcellular organelle-targeted nanoformulations for cancer theranostics are receiving increasing attention owing to their benefits of precise drug delivery, maximized therapeutic index, and reduced off-target side effects. Herein, a multichannel calcium ion (Ca2+ ) nanomodulator (CaNMCUR+CDDP ), i.e., a cisplatin (CDDP) and curcumin (CUR) co-incorporating calcium carbonate (CaCO3 ) nanoparticle, is prepared by a facile one-pot strategy in a sealed container with in situ synthesized polydopamine (PDA) as a template to enhance Ca2+ -overload-induced mitochondrial dysfunction in cancer therapy. After systemic administration, the PEGylated CaNMCUR+CDDP (PEG CaNMCUR+CDDP ) selectively accumulates in tumor tissues, enters tumor cells, and induces multilevel destruction of mitochondria by the combined effects of burst Ca2+ release, Ca2+ efflux inhibition by CUR, and chemotherapeutic CDDP, thereby observably boosting mitochondria-targeted tumor inhibition. Fluorescence imaging of CUR combined with photoacoustic imaging of PDA facilitates the visualization of the nanomodulator. The facile and practical design of this multichannel Ca2+ nanomodulator will contribute to the development of multimodal bioimaging-guided organelle-targeted cancer therapy in the future.
Keywords: calcium-ion overload; cancer theranostics; mitochondrial dysfunction; multichannel calcium-ion nanomodulators; multimodal bioimaging.
© 2021 Wiley-VCH GmbH.
Similar articles
-
Ultrasound-Augmented Mitochondrial Calcium Ion Overload by Calcium Nanomodulator to Induce Immunogenic Cell Death.Nano Lett. 2021 Mar 10;21(5):2088-2093. doi: 10.1021/acs.nanolett.0c04778. Epub 2021 Feb 17. Nano Lett. 2021. PMID: 33596078
-
Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma.Int J Pharm. 2018 Jul 10;545(1-2):261-273. doi: 10.1016/j.ijpharm.2018.05.007. Epub 2018 May 3. Int J Pharm. 2018. PMID: 29730175
-
Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine.Drug Des Devel Ther. 2020 Jun 9;14:2263-2274. doi: 10.2147/DDDT.S241291. eCollection 2020. Drug Des Devel Ther. 2020. PMID: 32606596 Free PMC article.
-
Hyaluronic acid-mediated targeted nano-modulators for activation of pyroptosis for cancer therapy through multichannel regulation of Ca2+ overload.Int J Biol Macromol. 2025 Apr;299:140116. doi: 10.1016/j.ijbiomac.2025.140116. Epub 2025 Jan 20. Int J Biol Macromol. 2025. PMID: 39842602
-
Biomimetic Ca2+ nanogenerator based on ions interference strategy for tumour-specific therapy.J Drug Target. 2021 Dec;29(10):1094-1101. doi: 10.1080/1061186X.2021.1919123. Epub 2021 May 3. J Drug Target. 2021. PMID: 33896301
Cited by
-
Functional Nanomedicines for Targeted Therapy of Bladder Cancer.Front Pharmacol. 2021 Nov 16;12:778973. doi: 10.3389/fphar.2021.778973. eCollection 2021. Front Pharmacol. 2021. PMID: 34867408 Free PMC article. Review.
-
In vivo imaging of mitochondrial DNA mutations using an integrated nano Cas12a sensor.Nat Commun. 2023 Nov 24;14(1):7722. doi: 10.1038/s41467-023-43552-0. Nat Commun. 2023. PMID: 38001092 Free PMC article.
-
Targeted editing of CCL5 with CRISPR-Cas9 nanoparticles enhances breast cancer immunotherapy.Apoptosis. 2025 Apr;30(3-4):912-935. doi: 10.1007/s10495-024-02032-6. Epub 2025 Jan 27. Apoptosis. 2025. PMID: 39870938 Free PMC article.
-
Polydopamine nanomaterials and their potential applications in the treatment of autoimmune diseases.Drug Deliv. 2023 Dec;30(1):2289846. doi: 10.1080/10717544.2023.2289846. Epub 2023 Dec 9. Drug Deliv. 2023. PMID: 38069584 Free PMC article. Review.
-
Concerting magnesium implant degradation facilitates local chemotherapy in tumor-associated bone defect.Bioact Mater. 2024 Jun 24;40:445-459. doi: 10.1016/j.bioactmat.2024.06.026. eCollection 2024 Oct. Bioact Mater. 2024. PMID: 39027327 Free PMC article.
References
-
- M. Das, F. Alzaid, J. Bayry, Cell Metab. 2019, 29, 243.
-
- C. Giorgi, A. Danese, S. Missiroli, S. Patergnani, P. Pinton, Trends Cell Biol. 2018, 28, 258.
-
- N. San Martin, A. M. Cervera, C. Cordova, D. Covarello, K. J. McCreath, B. G. Galvez, Stem Cells 2011, 29, 1064.
-
- C. Y. Yu, H. Xu, S. Ji, R. T. Kwok, J. W. Lam, X. Li, S. Krishnan, D. Ding, B. Z. Tang, Adv. Mater. 2017, 29, 1606167.
-
- R. C. Lin, S. F. Yang, H. L. Chiou, S. C. Hsieh, S. H. Wen, K. H. Lu, Y. H. Hsieh, Cells 2019, 8, 1441.
MeSH terms
Substances
Grants and funding
- 52022095/National Natural Science Foundation of China
- 51973216/National Natural Science Foundation of China
- 51873207/National Natural Science Foundation of China
- 51803006/National Natural Science Foundation of China
- 51833010/National Natural Science Foundation of China
- 20200404182YY/Science and Technology Development Program of Jilin Province
- Youth Innovation Promotion Association
- 2019230/Chinese Academy of Sciences
- 2019230/Youth Innovation Promotion Association of the Chinese Academy of Sciences
- 20200404182YY/Jilin Scientific and Technological Development Program
- 51833010/Innovative Research Group Project of the National Natural Science Foundation of China
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous