Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees
- PMID: 33678934
- PMCID: PMC7914393
- DOI: 10.1007/s10910-020-01195-2
Biochemical and phylogenetic networks-II: X-trees and phylogenetic trees
Abstract
The present study, which is a continuation of the previous paper, augments a recent work on the use of phylogenetic networks. We develop techniques to characterize the topology of various X-trees and binary trees of biological and phylogenetic interests. We have obtained the results for various k-level X-trees and phylogenetic networks with variants of Zagreb, Szeged, Padmakar-Ivan, Schultz and Atom Bond Connectivity topological indices.
Keywords: Biochemical and phylogenetic networks; Eccentricity-based topological indices; Topological indices of X-trees and phylogenetic trees.
© Springer Nature Switzerland AG 2021.
Conflict of interest statement
Conflict of interestThe authors declare that there is no conflict of interests regarding the publication of this paper.
Figures
Similar articles
-
Biochemical and phylogenetic networks-I: hypertrees and corona products.J Math Chem. 2021;59(3):676-698. doi: 10.1007/s10910-020-01194-3. Epub 2021 Feb 6. J Math Chem. 2021. PMID: 33583991 Free PMC article.
-
Topological analysis of vertebrate phylogenetic trees utilizing Horton's first law.J Theor Biol. 2023 Apr 7;562:111419. doi: 10.1016/j.jtbi.2023.111419. Epub 2023 Jan 31. J Theor Biol. 2023. PMID: 36731719
-
Generating normal networks via leaf insertion and nearest neighbor interchange.BMC Bioinformatics. 2019 Dec 17;20(Suppl 20):642. doi: 10.1186/s12859-019-3209-3. BMC Bioinformatics. 2019. PMID: 31842746 Free PMC article.
-
Trinets encode orchard phylogenetic networks.J Math Biol. 2021 Aug 21;83(3):28. doi: 10.1007/s00285-021-01654-7. J Math Biol. 2021. PMID: 34420100
-
Encoding phylogenetic trees in terms of weighted quartets.J Math Biol. 2008 Apr;56(4):465-77. doi: 10.1007/s00285-007-0125-3. Epub 2007 Sep 21. J Math Biol. 2008. PMID: 17891538
References
-
- Balasubramanian K. Tree pruning method and lattice statistics on bethe lattices. J. Math. Chem. 1988;2:69–82. doi: 10.1007/BF01166469. - DOI
-
- Balasubramanian K. Nested wreath groups and their applications to phylogeny in biology and Cayley trees in chemistry and physics. J. Math. Chem. 2017;55(1):195–222. doi: 10.1007/s10910-016-0680-1. - DOI
LinkOut - more resources
Full Text Sources
Other Literature Sources