Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Mar 4;12(1):27-40.
doi: 10.1007/s13167-021-00237-2. eCollection 2021 Mar.

Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine

Affiliations
Review

Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine

Lenka Koklesova et al. EPMA J. .

Abstract

Mitochondrial injury plays a key role in the aetiopathology of multifactorial diseases exhibiting a "vicious circle" characteristic for pathomechanisms of the mitochondrial and multi-organ damage frequently developed in a reciprocal manner. Although the origin of the damage is common (uncontrolled ROS release, diminished energy production and extensive oxidative stress to life-important biomolecules such as mtDNA and chrDNA), individual outcomes differ significantly representing a spectrum of associated pathologies including but not restricted to neurodegeneration, cardiovascular diseases and cancers. Contextually, the role of predictive, preventive and personalised (PPPM/3P) medicine is to introduce predictive analytical approaches which allow for distinguishing between individual outcomes under circumstance of mitochondrial impairments followed by cost-effective targeted prevention and personalisation of medical services. Current article considers innovative concepts and analytical instruments to advance management of mitochondriopathies and associated pathologies.

Keywords: Aetiopathology multi-organ dysfunction; Ageing; Alzheimer; Biomarker panel; COVID-19; Cancer; Cardiovascular disease; Complementary medicine; Cost efficacy; Energy imbalance; Glaucoma; Health policy; Individualised patient profiling; Injury; Liquid biopsy; Mechanisms; Mitigating measures; Mitochondrial impairment; Molecular patterns; Multi-modal diagnostics; Multifactorial disease; Neurodegeneration; Origin; Outcomes; Oxidative stress; Patient stratification; Predictive preventive personalised medicine (PPPM/3PM); ROS; Repair; Reversible damage; Suboptimal health; Vasospasm; Vicious circle.

PubMed Disclaimer

Conflict of interest statement

Conflict of interestThe authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Mitochondrial function in the cell
Fig. 2
Fig. 2
Molecular mechanisms and factors associated with mitochondrial impairments in neurodegenerative and cardiovascular diseases, and cancer. ADAM10, a disintegrin and 71 metalloprotease 10; APP, amyloid precursor protein; PSEN1, presenilin 1; PSEN2, presenilin 2; EMT, epithelial-mesenchymal transition; mtROS, mitochondrial reactive oxygen species; CVD, cardiovascular disease; DNA, deoxyribonucleic acid; ApoE, apolipoprotein E; SOD2, superoxide dismutase 2; ETC, electron transport chain; DJ1, parkin-associated protein involved with oxidative stress; HTRA2, serine peptidase 2; PD, Parkinson’s disease; mPTP, mitochondrial permeability transition pore; ATP, adenosine triphosphate; PINK1, putative serine threonine kinase; CytC, cytochrome c; ANT, adenine nucleotide translocator; CyPD, cyclophilin D; NDUFS1, anti-oxidative enzyme superoxide dismutase 2 and complex I subunit; VDAC, voltage-dependent anion channel; Parkin, E3 ubiquitin ligase; α-syn, α-synuclein; UCH-L1, ubiquitin carboxy-terminal hydrolase L1; SH3GL2, SH3 domain containing GRB2 like 2/endophilin A1

References

    1. Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J. 2017;284:183–195. doi: 10.1111/febs.13820. - DOI - PubMed
    1. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148:1145–1159. doi: 10.1016/j.cell.2012.02.035. - DOI - PMC - PubMed
    1. Alena L, Marek S, Lenka K, Erik K, Peter K, Olga G. Mitochondriopathies as a clue to systemic disorders: “vicious circle” Of mitochondrial injury, analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P). Medicine. 2021. - PMC - PubMed
    1. Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol basis Dis. 1866;2020:165845. doi: 10.1016/j.bbadis.2020.165845. - DOI - PubMed
    1. Kuznetsov AV, Margreiter R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity. Int J Mol Sci. 2009;10:1911–1929. doi: 10.3390/ijms10041911. - DOI - PMC - PubMed

LinkOut - more resources