Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Dec;20(12):4052-4059.
doi: 10.1111/jocd.14051. Epub 2021 Mar 25.

Tremella fuciformis polysaccharides inhibit UVA-induced photodamage of human dermal fibroblast cells by activating up-regulating Nrf2/Keap1 pathways

Affiliations

Tremella fuciformis polysaccharides inhibit UVA-induced photodamage of human dermal fibroblast cells by activating up-regulating Nrf2/Keap1 pathways

Hao Fu et al. J Cosmet Dermatol. 2021 Dec.

Abstract

Background: UVA radiation can cause skin oxidative stress. Tremella fuciformis polysaccharides (TFPS) are the main active ingredient in Tremella. Previous studies have shown that TFPS have protective effects on UVA-induced oxidative stress cells, but the specific protective mechanism has not been clarified.

Objective: This study aims to explore the potential protective mechanism of Tremella fuciformis polysaccharides on UVA-induced damage to human dermal fibroblasts cells.

Methods: We evaluated the protective ability of TFPS against UVA-induced damage by detecting cell survival rate, the content of reactive oxygen species (ROS) and malondialdehyde (MDA) in the cells, and the scavenging activity of ABTS free radicals, as well as the enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and the Nrf2-Keap-1 pathway protein and gene were measured to study the protective mechanism of TFPS from photodamage.

Results: TFPS pretreatment can reduce the oxidative stress of UVA-treated human dermal fibroblasts cells. After TFPS pretreatment, the content of ROS and MDA in the cell decreased significantly and the total antioxidant activity was increased. Among them, the active of CAT, SOD, and GSH-Px in the cells increased significantly. TFPS can also protect fibroblasts by up-regulating Nrf2 and down-regulating Keap1 expression. Finally, it was also found that TFPS pretreatment increased the content of collagen I, elastin, and hyaluronic acid (HA) in skin fibroblasts treated with UVA.

Conclusion: These results indicate that a certain concentration of TFPS can effectively alleviate skin damage caused by UVA, and they may be used as an effective component of cosmetics.

Keywords: Nrf2; Tremella fuciformis polysaccharides; UVA; human dermal fibroblasts; oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066-1077.
    1. Sander CS, Ali I, Dean D, Thiele JJ, Wojnarowska F. Oxidative stress is implicated in the pathogenesis of lichen sclerosus. Br J Dermatol. 2004;151:627-635.
    1. Lubos E, Loscalzo J, Handy DE. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;15(7):1957-1997.
    1. Hseu YC, Chou CW, Senthil Kumar K, et al. Ellagic acid protects human keratinocyte (HaCaT) cells against UVA-induced oxidative stress and apoptosis through the upregulation of the HO-1 and Nrf-2 antioxidant genes. Food Chem Toxicol. 2012;50:1245-1255.
    1. Hseu YC, Lo HW, Korivi M, Tsai YC, Tang MJ, Yang HL. Dermato-protective properties of ergothioneine through induction of Nrf2/ARE-mediated antioxidant genes in UVA-irradiated Human keratinocytes. Free Radic Biol Med. 2015;86:102-117.

Supplementary concepts

LinkOut - more resources