Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer
- PMID: 33688046
- PMCID: PMC7980405
- DOI: 10.1073/pnas.2018240118
Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer
Abstract
Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna-Matthews-Olson (FMO) pigment-protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4-1 and 4-2-1 pathways because the exciton 4-1 energy gap is vibronically coupled with a bacteriochlorophyll-a vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4-1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4-2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. This result shows how pigment-protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.
Keywords: excitonic energy transfer; photosynthesis; quantum effects in biology; ultrafast spectroscopy; vibronic coupling.
Conflict of interest statement
The authors declare no competing interest.
Figures



Similar articles
-
Redox conditions correlated with vibronic coupling modulate quantum beats in photosynthetic pigment-protein complexes.Proc Natl Acad Sci U S A. 2021 Dec 7;118(49):e2112817118. doi: 10.1073/pnas.2112817118. Proc Natl Acad Sci U S A. 2021. PMID: 34845027 Free PMC article.
-
Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment-Protein Complexes.J Phys Chem Lett. 2018 Jan 4;9(1):89-95. doi: 10.1021/acs.jpclett.7b02883. Epub 2017 Dec 19. J Phys Chem Lett. 2018. PMID: 29236502
-
Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex.Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4486-93. doi: 10.1073/pnas.1603330113. Epub 2016 Jun 22. Proc Natl Acad Sci U S A. 2016. PMID: 27335466 Free PMC article.
-
Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting.Photosynth Res. 2024 Dec;162(2-3):139-156. doi: 10.1007/s11120-024-01095-5. Epub 2024 Apr 24. Photosynth Res. 2024. PMID: 38656684 Review.
-
From coherent to vibronic light harvesting in photosynthesis.Curr Opin Chem Biol. 2018 Dec;47:39-46. doi: 10.1016/j.cbpa.2018.07.023. Epub 2018 Aug 2. Curr Opin Chem Biol. 2018. PMID: 30077962 Review.
Cited by
-
Explaining the Efficiency of Photosynthesis: Quantum Uncertainty or Classical Vibrations?J Phys Chem Lett. 2022 Apr 21;13(15):3392-3399. doi: 10.1021/acs.jpclett.2c00538. Epub 2022 Apr 11. J Phys Chem Lett. 2022. PMID: 35404611 Free PMC article.
-
Progress and Prospects in Optical Ultrafast Microscopy in the Visible Spectral Region: Transient Absorption and Two-Dimensional Microscopy.J Phys Chem C Nanomater Interfaces. 2023 Jul 24;127(30):14557-14586. doi: 10.1021/acs.jpcc.3c02091. eCollection 2023 Aug 3. J Phys Chem C Nanomater Interfaces. 2023. PMID: 37554548 Free PMC article. Review.
-
Examining Sound, Light, and Vibrations as Tools to Manage Microbes and Support Holobionts, Ecosystems, and Technologies.Microorganisms. 2024 Apr 30;12(5):905. doi: 10.3390/microorganisms12050905. Microorganisms. 2024. PMID: 38792734 Free PMC article. Review.
-
Nuclear quantum effects slow down the energy transfer in biological light-harvesting complexes.Sci Adv. 2025 Jun 6;11(23):eadw4798. doi: 10.1126/sciadv.adw4798. Epub 2025 Jun 6. Sci Adv. 2025. PMID: 40479072 Free PMC article.
-
Recent advances in the structural diversity of reaction centers.Photosynth Res. 2021 Sep;149(3):329-343. doi: 10.1007/s11120-021-00857-9. Epub 2021 Jun 26. Photosynth Res. 2021. PMID: 34173168 Free PMC article.
References
-
- Fenna R. E., Matthews B. W., Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola. Nature 258, 573–577 (1975).
-
- Liu Z., et al. ., Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004). - PubMed
-
- Blankenship R. E., Molecular Mechanisms of Photosynthesis (Wiley/Blackwell, Chichester, ed. 2, 2014).
-
- Saer R., et al. ., Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues. Biochim. Biophys. Acta 1857, 1455–1463 (2016). - PubMed
Publication types
MeSH terms
Substances
Associated data
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous