Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review
- PMID: 33689142
- DOI: 10.1007/s12033-021-00311-0
Electropsun Polycaprolactone Fibres in Bone Tissue Engineering: A Review
Abstract
Regeneration of bone tissue requires novel load bearing, biocompatible materials that support adhesion, spreading, proliferation, differentiation, mineralization, ECM production and maturation of bone-forming cells. Polycaprolactone (PCL) has many advantages as a biomaterial for scaffold production including tuneable biodegradation, relatively high mechanical toughness at physiological temperature. Electrospinning produces nanofibrous porous matrices that mimic many properties of natural tissue extracellular matrix with regard to surface area, porosity and fibre alignment. The biocompatibility and hydrophilicity of PCL nanofibres can be improved by combining PCL with other biomaterials to form composite scaffolds for bone regeneration. This work reviews the most recent research on synthesis, characterization and cellular response to nanofibrous PCL scaffolds and the composites of PCL with other natural and synthetic materials for bone tissue engineering.
Keywords: Biocompatibility; Bone tissue engineering; Electrospinning; Polycaprolactone; Polymer composites; Scaffold.
Similar articles
-
Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.J Biomater Sci Polym Ed. 2014;25(17):1986-2008. doi: 10.1080/09205063.2014.966800. Epub 2014 Oct 7. J Biomater Sci Polym Ed. 2014. PMID: 25291106
-
Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method.J Mater Sci Mater Med. 2012 Sep;23(9):2217-26. doi: 10.1007/s10856-012-4695-2. Epub 2012 Jun 6. J Mater Sci Mater Med. 2012. PMID: 22669285
-
3-D mineralized silk fibroin/polycaprolactone composite scaffold modified with polyglutamate conjugated with BMP-2 peptide for bone tissue engineering.Colloids Surf B Biointerfaces. 2018 Mar 1;163:369-378. doi: 10.1016/j.colsurfb.2017.12.043. Epub 2017 Dec 28. Colloids Surf B Biointerfaces. 2018. PMID: 29335199
-
PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications.Mol Biotechnol. 2018 Jul;60(7):506-532. doi: 10.1007/s12033-018-0084-5. Mol Biotechnol. 2018. PMID: 29761314 Review.
-
Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.Mater Sci Eng C Mater Biol Appl. 2020 May;110:110698. doi: 10.1016/j.msec.2020.110698. Epub 2020 Jan 29. Mater Sci Eng C Mater Biol Appl. 2020. PMID: 32204012 Free PMC article. Review.
Cited by
-
Fibrous Polymer-Based Composites Obtained by Electrospinning for Bone Tissue Engineering.Polymers (Basel). 2021 Dec 28;14(1):96. doi: 10.3390/polym14010096. Polymers (Basel). 2021. PMID: 35012119 Free PMC article. Review.
-
3D-printed Mg-incorporated PCL-based scaffolds improves rotator cuff tendon-bone healing through regulating macrophage polarization.Front Bioeng Biotechnol. 2024 Jul 8;12:1407512. doi: 10.3389/fbioe.2024.1407512. eCollection 2024. Front Bioeng Biotechnol. 2024. PMID: 39040494 Free PMC article.
-
Biomaterials / bioinks and extrusion bioprinting.Bioact Mater. 2023 Jun 27;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006. eCollection 2023 Oct. Bioact Mater. 2023. PMID: 37435177 Free PMC article. Review.
-
Zinc Doped Synthetic Polymer Composites for Bone Regeneration: A Promising Strategy to Repair Bone Defects.Int J Nanomedicine. 2025 Jul 1;20:8567-8586. doi: 10.2147/IJN.S512994. eCollection 2025. Int J Nanomedicine. 2025. PMID: 40620680 Free PMC article. Review.
-
Biomineralization of Polyelectrolyte-Functionalized Electrospun Fibers: Optimization and In Vitro Validation for Bone Applications.Biomimetics (Basel). 2024 Apr 22;9(4):253. doi: 10.3390/biomimetics9040253. Biomimetics (Basel). 2024. PMID: 38667264 Free PMC article.
References
-
- Sarkar, R., Agrawal, A., & Ghosh, R. (2019). Preparation of ex-situ Mixed Sintered Biphasic Calcium Phosphate Ceramics from Its Co-Precipitated Precursors and Their Characterization. Transactions of the Indian Ceramic Society, 78(2), 101–107. https://doi.org/10.1080/0371750X.2019.1619484 - DOI
-
- Dwivedi, R., et al. (2020). Polycaprolactone as biomaterial for bone scaffolds: Review of literature. Journal of Oral Biology and Craniofacial Research, 10(1), 381–388. https://doi.org/10.1016/j.jobcr.2019.10.003 - DOI - PubMed
-
- Siddiqui, N., Asawa, S., Birru, B., Baadhe, R., & Rao, S. (2018). PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Molecular Biotechnology, 60(7), 506–532. https://doi.org/10.1007/s12033-018-0084-5 - DOI - PubMed
-
- Mallick, S. P., Beyene, Z., Suman, D. K., Madhual, A., Singh, B. N., & Srivastava, P. (2019). Strategies towards Orthopaedic Tissue Engineered Graft Generation: Current Scenario and Application. Biotechnology and Bioprocess Engineering, 24(6), 854–869. https://doi.org/10.1007/s12257-019-0086-6 - DOI
-
- B. Azimi, P. Nourpanah, M. Rabiee, and S. Arbab, “Poly (ε-caprolactone) Fiber: An Overview.” [Online]. Available: http://www.jeffjournal.org .
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources