Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2021 Apr:305:110849.
doi: 10.1016/j.plantsci.2021.110849. Epub 2021 Feb 16.

Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves

Affiliations
Comparative Study

Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves

Hsin-Hung Lin et al. Plant Sci. 2021 Apr.

Abstract

IbACP, Ipomoea batatas anti-cancer peptide, a sixteen-amino-acid peptide isolated from sweet potato leaves, is capable of mediating a rapid alkalinization of growth media in plant suspension cells. However, the biological roles of IbACP as a defense peptide have not been studied. The objective of this study was to investigate the effect of IbACP on the accumulation of reactive oxygen species (ROS) and the expression of the defense-related genes. IbACP treatment of sweet potato leaves resulted in marked accumulation of both superoxide ion (O2-) and hydrogen peroxide (H2O2). The activity of peroxidase (POD) was significantly enhanced by IbACP treatment, suggesting that high levels of POD antioxidant activity may be used to scavenge the excess H2O2 in sweet potato plants. The IbACP-related genes were identified by suppression subtractive hybridization (SSH), and were then classified and assigned to the following categories: defense, development, metabolism, signaling, gene expression, and abiotic stress. H2O2 acts as a second messenger for gene activation in some of the IbACP-triggered gene expressions. These results demonstrated that IbACP is part of an integrated strategy for genetic regulation in sweet potato. Our work highlights the function of IbACP and its potential use for enhancing stress tolerance in sweet potato, in an effort to improve our understanding of defense-response mechanisms.

Keywords: Antioxidant enzyme; Plant peptide; Semi-quantitative RT-PCR; Suppression subtractive hybridization; Sweet potato.

PubMed Disclaimer

Publication types

LinkOut - more resources