Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 23;84(4):1012-1021.
doi: 10.1021/acs.jnatprod.0c01044. Epub 2021 Mar 11.

In Vivo Profiling of a Natural Alkaloid, Anatabine, in Rodents: Pharmacokinetics and Anti-Inflammatory Efficacy

Affiliations

In Vivo Profiling of a Natural Alkaloid, Anatabine, in Rodents: Pharmacokinetics and Anti-Inflammatory Efficacy

Wenhao Xia et al. J Nat Prod. .

Abstract

Natural alkaloids, a large class of plant-derived substances, have attracted considerable interest because of their pharmacological activities. In this study, the in vivo pharmacokinetics and anti-inflammatory profile of anatabine, a naturally occurring alkaloid, were characterized in rodents. Anatabine was found to be bioavailable and brain-penetrant following systemic administration. Following intraperitoneal (i.p.) administration (1, 2, and 5 mg/kg), anatabine caused a dose-dependent reduction in carrageenan-induced paw edema in rats; in mice, it inhibited the production of pro-inflammatory cytokines and simultaneously elevated the levels of an anti-inflammatory cytokine in a dose-dependent manner 2 h after lipopolysaccharide challenge. Furthermore, anatabine (∼10 and ∼20 mg/kg/day for 4 weeks; inhalation exposure) had effects in a murine model of multiple sclerosis, reducing neurological deficits and bodyweight loss. Comparative studies of the pharmacokinetics and anti-inflammatory activity of anatabine demonstrated its bioequivalence in rats following i.p. administration and inhalation exposure. This study not only provides the first detailed profile of anatabine pharmacokinetics in rodents but also comprehensively characterizes the anti-inflammatory activities of anatabine in acute and chronic inflammatory models. These findings provide a basis for further characterizing and optimizing the anti-inflammatory properties of anatabine.

PubMed Disclaimer

Publication types