Learning active nematics one step at a time
- PMID: 33707217
- PMCID: PMC7999947
- DOI: 10.1073/pnas.2102169118
Learning active nematics one step at a time
Conflict of interest statement
The authors declare no competing interest.
Figures
Comment on
-
Machine learning active-nematic hydrodynamics.Proc Natl Acad Sci U S A. 2021 Mar 9;118(10):e2016708118. doi: 10.1073/pnas.2016708118. Proc Natl Acad Sci U S A. 2021. PMID: 33653956 Free PMC article.
References
-
- Carleo G., et al., Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).
-
- Pathak J., Hunt B., Girvan M., Lu Z., Ott E., Model-free prediction of large spatiotemporally chaotic systems from data: A reservoir computing approach. Phys. Rev. Lett. 120, 024102 (2018). - PubMed
-
- Zhou Z., et al., Machine learning forecasting of active nematics. Soft Matter 17, 738–747 (2021). - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
