Computational Evaluation of Venous Graft Geometries in Coronary Artery Bypass Surgery
- PMID: 33711465
- PMCID: PMC8429518
- DOI: 10.1053/j.semtcvs.2021.03.007
Computational Evaluation of Venous Graft Geometries in Coronary Artery Bypass Surgery
Abstract
Cardiothoracic surgeons are faced with a choice of different revascularization techniques and diameters for saphenous vein grafts (SVG) in coronary artery bypass graft surgery . Using computational simulations, we virtually investigate the effect of SVG geometry on hemodynamics of both venous grafts and the target coronary arteries. We generated patient-specific 3-dimensional anatomic models of coronary artery bypass graft surgery patients and quantified mechanical stimuli. We performed virtual surgery on 3 patient-specific models by modifying the geometry vein grafts to reflect single, Y, and sequential surgical configurations with SVG diameters ranging from 2 mm to 5 mm. Our study demonstrates that the coronary artery runoffs are relatively insensitive to the choice of SVG revascularization geometry. We observe a 10% increase in runoff when the SVG diameter is changed from 2 mm to 5 mm. The wall shear stress of SVG increases dramatically when the diameter drops, following an inverse power scaling with diameter. For a fixed diameter, the average wall shear stress on the vein graft varies in ascending order as single, Y, and sequential graft in the patient cohort. The runoff to the target coronary arteries changes marginally due to the choice of graft configuration or diameter. The shear stress on the vein graft depends on both flow rate and diameter and follows an inverse power scaling consistent with a Poiseuille flow assumption. Given the similarity in runoff with different surgical configurations, choices of SVG geometries can be informed by propensity for graft failure using shear stress evaluations.
Keywords: Blood flow simulation; Coronary artery bypass graft surgery (CABG); Shear stress; Vein graft; Virtual surgery.
Copyright © 2021 Elsevier Inc. All rights reserved.
Figures







Comment in
-
Commentary: Coronary Surgery Goes Virtual!Semin Thorac Cardiovasc Surg. 2022 Summer;34(2):533-534. doi: 10.1053/j.semtcvs.2021.04.012. Epub 2021 May 15. Semin Thorac Cardiovasc Surg. 2022. PMID: 34000430 No abstract available.
-
Commentary: Cannot Escape the Stress of Precision Revascularization For Coronary Artery Disease.Semin Thorac Cardiovasc Surg. 2022 Summer;34(2):535-536. doi: 10.1053/j.semtcvs.2021.04.009. Epub 2021 May 15. Semin Thorac Cardiovasc Surg. 2022. PMID: 34004312 No abstract available.
References
-
- van Brussel BL, et al. Different clinical outcome in coronary artery bypass with single and sequential vein grafts: A fifteen-year follow-up study. The Journal of Thoracic and Cardiovascular Surgery. 1996;112(1):69–78. - PubMed
-
- Vural, ener, as demir O ong-term patency of sequential and individual saphenous vein coronary bypass grafts. European Journal of Cardio-thoracic Surgery. 2001;19:140–144. - PubMed
-
- Park SJ, Kim HJ, Kim JB, Jung S-H, Choo SJ, Lee JW, et al. Sequential Versus Individual Saphenous Vein Grafting During Coronary Arterial Bypass Surgery. The Annals of Thoracic Surgery. 2020. In press. - PubMed
-
- Wallgren S, Nielsen S, Pan E, Pivodic A, Hansson EC, Malm CJ, et al. A single sequential snake saphenous vein graft versus separate left and right vein grafts in coronary artery bypass surgery: a population-based cohort study from the SWEDEHEART registry. European Journal of Cardio-Thoracic Surgery. 2019;56(3): 518–525. - PubMed
-
- Goldman S, Zadina K, Krasnicka B, Moritz T, Sethi G, Copeland J et al. Predictors of Graft Patency 3 Years After Coronary Artery Bypass Graft Surgery. Journal of the American College of Cardiology. 1997;29(7):1563–1568. - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical