Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May:132:104299.
doi: 10.1016/j.compbiomed.2021.104299. Epub 2021 Mar 3.

Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition

Affiliations

Multifuse multilayer multikernel RVFLN+ of process modes decomposition and approximate entropy data from iEEG/sEEG signals for epileptic seizure recognition

Susanta Kumar Rout et al. Comput Biol Med. 2021 May.

Abstract

In this paper, the extracted features using variational mode decomposition (VMD) and approximate entropy (ApEn) privileged information of the input EEG signals are combined with multilayer multikernel random vector functional link network plus (MMRVFLN+) classifier to recognize the epileptic seizure epochs efficaciously. In our experiment Bonn University single-channel intracranial electroencephalogram (iEEG) and Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) multichannel scalp EEG (sEEG) recordings are considered to evaluate the efficacy of the proposed method. The VMD is applied on chaotic, non-stationary, nonlinear, and complex EEG signal to decompose it into three band-limited intrinsic mode functions (BLIMFs). The Hilbert transform (HT) is applied on BLIMFs to extract informative spectral and temporal features. The ApEn is computed from the raw EEG signals as the privileged information and given to the multi-hidden layer structure to obtain the most discriminative compressed form. The scatter plots show the distinct nature of compressed privileged ApEn information among the seizure pattern classes. The linear as well as nonlinear mapping, local and global kernel function, high-learning speed, less computationally complex MMRVFLN+ classifier is proposed to recognize the seizure events accurately by importing the efficacious features with ApEn as the input. The advanced signal processing algorithm i.e., Hilbert Huang transform (HHT) with ApEn and MMRVFLN+ are combined to compare the performance with the proposed VMDHTApEn-MMRVFLN+ method. The proposed method has remarkable recognition ability, superior classification accuracy, and excellent overall performance as compared to other methods. The digital architecture of the multifuse MMRVFLN+ is developed and implemented on a high-speed reconfigurable FPGA hardware platform to validate the effectiveness of the proposed method. The superior classification accuracy, the negligible false positive rate per hour (FPR/h), simplicity, feasibility, robustness, and practicability of the proposed method validate its ability to recognize the epileptic seizure epochs automatically.

Keywords: Epileptic seizure; Field-programmable gate array (FPGA); Hilbert transform (HT); Intracranial electroencephalogram (iEEG); Multilayer multikernel random vector functional link network plus (MMRVFLN); Scalp EEG (sEEG); Variational mode decomposition (VMD).

PubMed Disclaimer

Similar articles

Cited by