Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage
- PMID: 33713028
- DOI: 10.1007/s12975-021-00906-4
Ifenprodil Improves Long-Term Neurologic Deficits Through Antagonizing Glutamate-Induced Excitotoxicity After Experimental Subarachnoid Hemorrhage
Abstract
Excessive glutamate leading to excitotoxicity worsens brain damage after SAH and contributes to long-term neurological deficits. The drug ifenprodil is a non-competitive antagonist of GluN1-GluN2B N-methyl-d-aspartate (NMDA) receptor, which mediates excitotoxic damage in vitro and in vivo. Here, we show that cerebrospinal fluid (CSF) glutamate level within 48 h was significantly elevated in aSAH patients who later developed poor outcome. In rat SAH model, ifenprodil can improve long-term sensorimotor and spatial learning deficits. Ifenprodil attenuates experimental SAH-induced neuronal death of basal cortex and hippocampal CA1 area, cellular and mitochondrial Ca2+ overload of basal cortex, blood-brain barrier (BBB) damage, and cerebral edema of early brain injury. Using in vitro models, ifenprodil declines the high-concentration glutamate-mediated intracellular Ca2+ increase and cell apoptosis in primary cortical neurons, reduces the high-concentration glutamate-elevated endothelial permeability in human brain microvascular endothelial cell (HBMEC). Altogether, our results suggest ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity.
Keywords: Excitotoxicity; Glutamate; Ifenprodil; Subarachnoid hemorrhage.
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
References
-
- Rinkel GJ, Algra A. Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol. 2011;10(4):349–56. https://doi.org/10.1016/S1474-4422(11)70017-5 . - DOI - PubMed
-
- Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013;4(4):432–46. https://doi.org/10.1007/s12975-013-0257-2 . - DOI - PubMed - PMC
-
- Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91. https://doi.org/10.1016/j.pneurobio.2013.09.002 . - DOI - PubMed
-
- Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol. 2014;10(1):44–58. https://doi.org/10.1038/nrneurol.2013.246 . - DOI - PubMed
-
- Unterberg AW, Sakowitz OW, Sarrafzadeh AS, Benndorf G, Lanksch WR. Role of bedside microdialysis in the diagnosis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2001;94(5):740–9. https://doi.org/10.3171/jns.2001.94.5.0740 . - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Miscellaneous