Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr:217:112129.
doi: 10.1016/j.jphotobiol.2021.112129. Epub 2021 Jan 26.

Wavelength-dependent time-dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli

Affiliations

Wavelength-dependent time-dose reciprocity and stress mechanism for UV-LED disinfection of Escherichia coli

Dana Pousty et al. J Photochem Photobiol B. 2021 Apr.

Abstract

Ultraviolet (UV) disinfection efficiency by low-pressure (LP) mercury lamp depends on the UV fluence (dose): the product of incident irradiance (fluence rate) and exposure time, with correction factors. Time-dose reciprocity may not always apply, as higher UV-LP inactivation of E. coli was obtained at a higher irradiance over shorter exposure time, for the same UV fluence. Disinfection by UV LEDs is limited by low radiant flux compared to mercury LP lamps. Our goal was to determine the UV-LED time-dose reciprocity of E. coli for four different central LED wavelengths (265, 275, 285 and 295 nm) under different fluence rates. Inactivation kinetics determined at UV-LED265 was not affected by the fluence rate or exposure time for a given UV fluence. In contrast, UV-LED275, UV-LED285, and UV-LED295 led to higher inactivation at low fluence rate coupled to high exposure time, for the same UV fluence. The intracellular damage mechanisms for each LED central wavelength were determined by using the bioreporters RecA as an indicator of bacterial DNA damage and SoxS as an indicator of oxidative stress. For 265 nm, higher DNA damage was observed, whereas for 285 and 295 nm, higher oxidative stress (possibly due to reactive oxygen species [ROS] damage) was observed. ROS inactivation of E. coli was predicted to be more effective when keeping the ROS concentration low but allowing longer exposure, for a given UV fluence.

Keywords: Escherichia coli; Time–dose reciprocity; UV disinfection; UV light-emitting diode (UV LED).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources