Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jan 21;8(5):2000777.
doi: 10.1002/advs.202000777. eCollection 2021 Mar.

Magnetic Hysteresis at 10 K in Single Molecule Magnet Self-Assembled on Gold

Affiliations

Magnetic Hysteresis at 10 K in Single Molecule Magnet Self-Assembled on Gold

Chia-Hsiang Chen et al. Adv Sci (Weinh). .

Abstract

Tremendous progress in the development of single molecule magnets (SMMs) raises the question of their device integration. On this route, understanding the properties of low-dimensional assemblies of SMMs, in particular in contact with electrodes, is a necessary but difficult step. Here, it is shown that fullerene SMM self-assembled on metal substrate from solution retains magnetic hysteresis up to 10 K. Fullerene-SMM DySc2N@C80 and Dy2ScN@C80 are derivatized to introduce a thioacetate group, which is used to graft SMMs on gold. Magnetic properties of grafted SMMs are studied by X-ray magnetic circular dichroism and compared to the films of nonderivatized fullerenes prepared by sublimation. In self-assembled films, the magnetic moments of the Dy ions are preferentially aligned parallel to the surface, which is different from the disordered orientation of endohedral clusters in nonfunctionalized fullerenes. Whereas chemical derivatization reduces the blocking temperature of magnetization and narrows the hysteresis of Dy2ScN@C80, for DySc2N@C80 equally broad hysteresis is observed as in the fullerene multilayer. Magnetic bistability in the DySc2N@C80 grafted on gold is sustained up to 10 K. This study demonstrates that self-assembly of fullerene-SMM derivatives offers a facile solution-based procedure for the preparation of functional magnetic sub-monolayers with excellent SMM performance.

Keywords: XMCD; fullerenes; magnetic hysteresis; self‐assembled monolayers; single‐molecule magnets.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Derivatization of fullerene M3N@C80 with a thioacetate group (M3N = Sc3N, DySc2N, and Dy2ScN) via 1,3‐dipolar cycloaddition (1) and deprotection of M3N‐R‐SAc by acid treatment in o‐DCB/ethanol leading to the formation of M3N‐SAM with partially chemisorbed and partially physisorbed molecules on gold (2).
Figure 2
Figure 2
XAS and XMCD spectra of Dy2ScN‐SAM a) and evaporated Dy2ScN@C80 sub‐monolayer b) on Au(111) measured at 30° and 90° orientation of the X‐ray and magnetic field versus the surface; T ≈ 2 K, H = 6.5 T, only the Dy‐M 5 edge is shown (see the Supporting Information for the whole Dy‐M 4,5 range). X‐ray polarizations are denoted at I + and I , nonpolarized XAS is a sum of I + and I , and XMCD is their difference normalized to the maximum of XAS. Magnetic hysteresis of Dy2ScN‐SAM c) and evaporated Dy2ScN@C80 sub‐monolayer d) on Au(111) measured by XMCD technique for two orientations of the sample; T ≈ 2 K, sweep rate 2 T min−1; dots are experimental values, lines are added to guide the eye. The measurements of the evaporated sub‐monolayer are from ref. [ 22 ].
Figure 3
Figure 3
XAS and XMCD spectra of DySc2N‐SAM a) and evaporated DySc2N@C80 multilayer b) on Au(111) measured at 30° and 90° orientations of the X‐ray and magnetic field versus the surface; T ≈ 2 K, H = 6 T, only the Dy‐M 5 edge is shown (see the Supporting Information for the whole Dy‐M 4,5 range). c) Angular dependence of XMCD asymmetry for DySc2N‐SAM on Au(111). θ is defined as the angle between X‐ray beam/magnetic field and the surface, dots are experimental values, solid line is a fit with the function XMCD/XAS  =  C 1cos 2(θ) + C 2. Dashed line shows the isotopic distribution for a completely disordered cluster ( C 1 =  0) such as found for the DySc2N@C80 multilayer.
Figure 4
Figure 4
Magnetic hysteresis curves measured by XMCD technique, sweep rate 2 T min−1. a) DySc2N‐SAM measured at 30° and 90°; T ≈ 2 K; b) DySc2N‐SAM, diluted DySc2/Sc3N‐SAM, and DySc2N@C80 multilayer measured at 30°, T ≈ 2 K. c) DySc2N‐SAM measured at 30° at different temperatures; d) DySc2N@C80 multilayer on Au(111) measured at 30° at different temperatures.

References

    1. Sessoli R., Gatteschi D., Caneschi A., Novak M. A., Nature 1993, 365, 141.
    1. a) Cervetti C., Heintze E., Bogani L., Dalton Trans. 2014, 43, 4220; - PubMed
    2. b) Bogani L., Wernesdorfer W., Nat. Mater. 2008, 7, 179. - PubMed
    3. c) Cucinotta G., Poggini L., Pedrini A., Bertani F., Cristiani N., Torelli M., Graziosi P., Cimatti I., Cortigiani B., Otero E., Ohresser P., Sainctavit P., Dediu A., Dalcanale E., Sessoli R., Mannini M., Adv. Funct. Mater. 2017, 27, 1703600;
    4. d) Katoh K., Komeda T., Yamashita M., Chem. Rec. 2016, 16, 987; - PubMed
    5. e) Cornia A., Seneor P., Nat. Mater. 2017, 16, 505; - PubMed
    6. f) Gaita‐Ariño A., Luis F., Hill S., Coronado E., Nat. Chem. 2019, 11, 301. - PubMed
    1. a) Moreno‐Pineda E., Godfrin C., Balestro F., Wernsdorfer W., Ruben M., Chem. Soc. Rev. 2018, 47, 501; - PubMed
    2. b) Godfrin C., Ferhat A., Ballou R., Klyatskaya S., Ruben M., Wernsdorfer W., Balestro F., Phys. Rev. Lett. 2017, 119, 187702; - PubMed
    3. c) Krainov I. V., Klier J., Dmitriev A. P., Klyatskaya S., Ruben M., Wernsdorfer W., Gornyi I. V., ACS Nano 2017, 11, 6868; - PubMed
    4. d) Urdampilleta M., Klayatskaya S., Ruben M., Wernsdorfer W., ACS Nano 2015, 9, 4458; - PubMed
    5. e) Ganzhorn M., Klyatskaya S., Ruben M., Wernsdorfer W., Nat. Nanotechnol. 2013, 8, 165; - PubMed
    6. f) Vincent R., Klyatskaya S., Ruben M., Wernsdorfer W., Balestro F., Nature 2012, 488, 357; - PubMed
    7. g) Urdampilleta M., Klyatskaya S., Cleuziou J. P., Ruben M., Wernsdorfer W., Nat. Mater. 2011, 10, 502. - PubMed
    1. a) Mannini M., Pineider F., Danieli C., Totti F., Sorace L., Sainctavit P., Arrio M. A., Otero E., Joly L., Cezar J. C., Cornia A., Sessoli R., Nature 2010, 468, 417; - PubMed
    2. b) Mannini M., Pineider F., Sainctavit P., Danieli C., Otero E., Sciancalepore C., Talarico A. M., Arrio M.‐A., Cornia A., Gatteschi D., Sessoli R., Nat. Mater. 2009, 8, 194. - PubMed
    1. a) Cornia A., Mannini M., Sainctavit P., Sessoli R., Chem. Soc. Rev. 2011, 40, 3076; - PubMed
    2. b) Domingo N., Bellido E., Ruiz‐Molina D., Chem. Soc. Rev. 2012, 41, 258; - PubMed
    3. c) Holmberg R. J., Murugesu M., J. Mater. Chem. C 2015, 3, 11986;
    4. d) Moreno Pineda E., Komeda T., Katoh K., Yamashita M., Ruben M., Dalton Trans. 2016, 45, 18417; - PubMed
    5. e) Carbone C., Gardonio S., Moras P., Lounis S., Heide M., Bihlmayer G., Atodiresei N., Dederichs P. H., Blügel S., Vlaic S., Lehnert A., Ouazi S., Rusponi S., Brune H., Honolka J., Enders A., Kern K., Stepanow S., Krull C., Balashov T., Mugarza A., Gambardella P., Adv. Funct. Mater. 2011, 21, 1212;
    6. f) Cornia A., Talham D. R., Affronte M., in Molecular Magnetic Materials (Eds: Sieklucka B., Pinkowicz D.), Wiley‐VCH, New York: 2017, p. 187.

LinkOut - more resources