Influence of the C-terminal domain on the bioluminescence activity and color determination in green and red emitting beetle luciferases and luciferase-like enzyme
- PMID: 33721241
- DOI: 10.1007/s43630-020-00007-5
Influence of the C-terminal domain on the bioluminescence activity and color determination in green and red emitting beetle luciferases and luciferase-like enzyme
Abstract
Beetle luciferases catalyze the bioluminescent oxidation of D-luciferin, producing bioluminescence colors ranging from green to red, using two catalytic steps: adenylation of D-luciferin to produce D-luciferyl-adenylate and PPi, and oxidation of D-luciferyl-adenylate, yielding AMP, CO2, and excited oxyluciferin, the emitter. Luciferases and CoA-ligases display a similar fold, with a large N-terminal domain, and a small C-terminal domain which undergoes rotation, closing the active site and promoting both adenylation and oxidative reactions. The effect of C-terminal domain deletion was already investigated for Photinus pyralis firefly luciferase, resulting in a red-emitting mutant with severely impacted luminescence activity. However, the contribution of C-terminal in the bioluminescence activities and colors of other beetle luciferases and related ancestral luciferases were not investigated yet. Here we compared the effects of the C-terminal domain deletion on green-emitting luciferases of Pyrearinus termitilluminans (Pte) click beetle and Phrixothrix vivianii railroadworm, and on the red-emitting luciferase of Phrixothrix hirtus railroadworm and luciferase-like enzyme of Zophobas morio. In all cases, the domain deletion severely impacted the overall bioluminescence activities and, slightly less, the oxidative activities, and usually red-shifted the bioluminescence colors. The results support the involvement of the C-terminal in shielding the active site from the solvent during the light emitting step. However, in Pte luciferase, the deletion caused only a 10 nm red-shift, indicating a distinctive active site which remains more shielded, independently of the C'-terminal. Altogether, the results confirm the main contribution of the C-terminal for the catalysis of the adenylation reaction and for active site shielding during the light emitting step.
Keywords: Bioluminescence; C-terminal; CoA-ligases; Luciferases.
References
-
- Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect Luciferases. Cellular and Molecular Life Sciences: CMLS, 59(11), 1833–1850. - DOI
-
- Day, J. C., Tisi, L. C., & Bailey, M. J. (2004). Evolution of beetle bioluminescence: the origin of beetle luciferin. Luminescence, 19(1), 8–20. - DOI
-
- A. M. Gulick, V. J. Starai, A. R. Horswill, K. M. Homick, and J. C. Escalante- Semerena. The 1.75 A Crystal Structure of acetyl-CoA Synthetase Bound to adenosine-5'-propylphosphate and Coenzyme A. Biochemistry, 2003, 42, n. 10, 2866–2873.
-
- Wood, K. V. (1995). The chemical mechanism and evolutionary development of beetle bioluminescence. Photochemistry and Photobiology, 62, 662–673. - DOI
-
- Babbitt, P. C., Kenyon, G. L., Martin, B. M., Charest, H., Slyvestre, M., Scholten, J. D., et al. (1992). Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry, 31(24), 5594–5604. - DOI