Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 2;86(7):5026-5046.
doi: 10.1021/acs.joc.0c02971. Epub 2021 Mar 16.

Access to Chiral Diamine Derivatives through Stereoselective Cu-Catalyzed Reductive Coupling of Imines and Allenamides

Affiliations

Access to Chiral Diamine Derivatives through Stereoselective Cu-Catalyzed Reductive Coupling of Imines and Allenamides

Toolika Agrawal et al. J Org Chem. .

Abstract

Chiral 1,2-diamino compounds are important building blocks in organic chemistry for biological applications and as asymmetric inducers in stereoselective synthesis that are challenging to prepare in a straightforward and stereoselective manner. Herein, we disclose a cost-effective and readily available Cu-catalyzed system for the reductive coupling of a chiral allenamide with N-alkyl substituted aldimines to access chiral 1,2-diamino synthons as single stereoisomers in high yields. The method shows broad reaction scope and high diastereoselectivity and can be easily scaled using standard Schlenk techniques. Mechanistic investigations by density functional theory calculations identified the mechanism and origin of stereoselectivity. In particular, the addition to the imine was shown to be reversible, which has implications toward development of catalyst-controlled stereoselective variants of the identified reductive coupling of imines and allenamides.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Selected examples of chiral 1,2-diamine- and urea-derived biologically active molecules.
Scheme 1
Scheme 1. Synthetic Strategies toward the Synthesis of 1,2-Diamines
Scheme 2
Scheme 2. Proposed Allylation Strategy toward the Synthesis of 1,2-Diamines
Scheme 3
Scheme 3. Proposed Reaction Catalytic Cycle
Scheme 4
Scheme 4. Imine Generality in the Cu-Catalyzed Reductive Coupling To Access 1,2-Diamino Synthons 18
Conditions: 9 (0.400 mmol), 15a (96.6 mg, 0.48 mmol), Cu(OAc)2 (5 mol %), PCy3 (6.5 mol %), t-BuOH (76 μL, 0.80 mmol), Me(MeO)2SiH (99 μL, 0.80 mmol), and 1.0 mL of toluene, rt 24 h followed by treatment with NH4F/MeOH. See the Supporting Information for more details. A single diastereomer of product was obtained in all cases by analysis of the unpurified reaction mixture by 1H NMR spectroscopy. Yields represent isolated yield. Reaction performed at 65 °C. Isolated as an inseparable mixture of 18 and urea 19.
Scheme 5
Scheme 5. Stereochemistry Determination
Scheme 6
Scheme 6. Synthetic Applications
Figure 2
Figure 2
Structures and relative free energies (in kcal/mol, with respect to separate LCuH catalyst and reactants) of possible hydrocupration pathways, optimized using B3LYP-D3/def2SVP-CPCM(toluene), M06-L/def2SVP-gas//B3LYP-D3/def2SVP-CPCM(toluene) (in parentheses), and B3LYP-D3/def2TZVPP-gas//B3LYP-D3/def2SVP-CPCM(toluene) {in braces}.
Figure 3
Figure 3
Structures and relative free energies (in kcal/mol, with respect to separate LCuH catalyst and reactants) for proposed mechanistic pathway, optimized using B3LYP-D3/def2SVP-CPCM(toluene), M06-L/def2SVP-gas//B3LYP-D3/def2SVP-CPCM(toluene) (in parentheses), and B3LYP-D3/def2TZVPP-gas//B3LYP-D3/def2SVP-CPCM(toluene) {in braces}. Optimized structures of transition states visualized with CYLview are shown (with PCy3 ligand faded out for clarity).
Figure 4
Figure 4
(A) Distortion–Interaction analysis of key diastereomeric C–C bond formation transition states. Electronic energies reported at B3LYP-D3/def2SVP-CPCM(toluene) level of theory. (B) Noncovalent Interaction analysis of key diastereomeric C–C bond formation transition states. Color code for the atoms is shown.
Figure 5
Figure 5
Energetic comparison of s-trans and s-cis conformations of an (E)-enamide system with chiral oxazolidinone, with steric hindrance causing allylic strain highlighted. Structures optimized using B3LYP-D3/def2SVP-CPCM(toluene) (Hrel and Grel shown in kcal/mol).
Scheme 7
Scheme 7. Mechanistic Implications Relevant to Catalyst-Controlled Enantioinduction

Similar articles

Cited by

References

    1. Reviews

    2. Lucet D.; Le Gall T.; Mioskowski C. The Chemistry of Vicinal Diamines. Angew. Chem., Int. Ed. 1998, 37, 2580–2627. 10.1002/(SICI)1521-3773(19981016)37:19<2580::AID-ANIE2580>3.0.CO;2-L. - DOI - PubMed
    3. Kotti S. R. S. S.; Timmons C.; Li G. Vicinal Diamino Functionalities as Privileged Structural Elements in Biologically Active Compounds and Exploitation of Their Synthetic Chemisty. Chem. Biol. Drug Des. 2006, 67, 101–114. 10.1111/j.1747-0285.2006.00347.x. - DOI - PubMed
    4. Viso A.; Fernandez de la Pradilla R.; Tortosa M.; Garcia A.; Flores A. Update 1 of: α,β-Diamino Acids: Biological Significance and Synthetic Approaches. Chem. Rev. 2011, 111, PR1–PR42. - PubMed
    5. Bergmeier S. C. The Synthesis of Vicinal Amino Alcohols. Tetrahedron 2000, 56, 2561–2576. 10.1016/S0040-4020(00)00149-6. - DOI
    1. Selected examples:

    2. Desai M. C.; Lefkowitz S. L.; Thadeio P. F.; Longo K. P.; Snider R. M. Discovery of a Potent Substance P Antagonist: Recognition of the Key Molecular Determinant. J. Med. Chem. 1992, 35, 4911–4913. 10.1021/jm00104a018. - DOI - PubMed
    3. Farina V.; Brown J. D. Tamiflu: The Supply Problem. Angew. Chem., Int. Ed. 2006, 45, 7330–7334. 10.1002/anie.200602623. - DOI - PubMed
    4. Clark P. G. K.; Vieira L. C. C.; Tallant C.; Fedorov O.; Singleton D. C.; Rogers C. M.; Monteiro O.; Bennett J. M.; Baronio R.; Muller S.; Daniels D. L.; Mendez J.; Knapp S.; Brennan P. E.; Dixon D. J. LP99: Discovery and Synthesis of the First Selective BRD7/9 Bromodomain Inhibitor. Angew. Chem., Int. Ed. 2015, 54, 6217–6221. 10.1002/anie.201501394. - DOI - PMC - PubMed
    5. Curreli F.; Kwon Y. D.; Zhang H.; Scacalossi D.; Belov D. S.; Tikhonov A. A.; Andreev I. A.; Altieri A.; Kurkin A. V.; Kwong P. D.; Debnath A. K. Structure-Based Design of a Small Molecule CD4-Antagonis with Broad Spectrum Anti-HIV-1 Activity. J. Med. Chem. 2015, 58, 6909–6927. 10.1021/acs.jmedchem.5b00709. - DOI - PMC - PubMed
    6. Kamath A.; Ojima I. Advances in the Chemistry of b-Lactam and Its Medicinal Applications. Tetrahedron 2012, 68, 10640–10664. 10.1016/j.tet.2012.07.090. - DOI - PMC - PubMed
    7. D’Ambrosio M.; Guerriero A.; Debitus C.; Ribes O.; Pusset J.; Leroy S.; Pietra F. Agelastatin A, a New Skeleton Cytotoxic Alkaloid of the Oroidin Family. Isolation from the Axinellid Sponge Agelas dendromorpha of the Coral Sea. J. Chem. Soc., Chem. Commun. 1993, 1305–1306. 10.1039/c39930001305. - DOI
    8. Reichard G. A.; Stengone C.; Paliwal S.; Mergelsberg I.; Majmundar S.; Wang C.; Tiberi R.; McPhail A. T.; Piwinski J. J.; Shih B.-Y. Asymmetric Synthesis of 4,4-Disubstituted-2-Imidazoli-dinones: Potent NK1 Antagonists. Org. Lett. 2003, 5, 4249–4251. 10.1021/ol030104p. - DOI - PubMed
    9. De Clercq P. J. Biotin: A Timeless Challenge for Total Synthesis. Chem. Rev. 1997, 97, 1755–1792. 10.1021/cr950073e. - DOI - PubMed
    10. Welin E. R.; Ngamnithiporn A.; Klatte M.; Lapointe G.; Pototschnig G. M.; McDermott M. S. J.; Conklin D.; Gilmore C. D.; Tadross P. M.; Haley C. K.; Negoro K.; Glibstrup E.; Grunanger C. U.; Allan K. M.; Virgil S. C.; Slamon D. J.; Stoltz B. M. Concise Total Syntheses of (−)-Jorunnamycin A and (−)-Jorumycin Enabled by Asymmetric Catalysis. Science 2019, 363, 270–275. 10.1126/science.aav3421. - DOI - PMC - PubMed
    11. Iwatsuki M.; Nishihara-Tsukashima A.; Ishiyama A.; Namatame M.; Watanabe Y.; Handasah S.; Pranamuda H.; Marwoto B.; Matsumoto A.; Takahashi Y.; Otoguro K.; Omura S. Jogyamycin, a New Antiprotozoal Aminocyclopentitol Antibiotic, Produced by Streptomyces Sp. a-WM-JG-16.2. J. Antibiot. 2012, 65 (3), 169–171. 10.1038/ja.2011.136. - DOI - PubMed
    12. Nishimura S.; Matsunaga S.; Shibazaki M.; Suzuki K.; Furihata K.; van Soest R. W. M.; Fusetani N. Massadine, a Novel Geranylgeranyltransferase Type I Inhibitor from the Marine Sponge Stylissa aff. Org. Lett. 2003, 5, 2255–2257. 10.1021/ol034564u. - DOI - PubMed
    1. Doyle A. G.; Jacobsen E. N. Small-Molecule H-Bond Donors in Asymmetric Catalysis. Chem. Rev. 2007, 107, 5713–5743. 10.1021/cr068373r. - DOI - PubMed
    2. Taylor M. S.; Jacobsen E. N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angew. Chem., Int. Ed. 2006, 45, 1520–1543. 10.1002/anie.200503132. - DOI - PubMed
    1. Bennani Y. L.; Hanessian S. trans-1,2-Diaminocyclohexane Derivatives as Chiral Reagents, Scaffolds, and Ligands for Catalysis: Applications in Asymmetric Synthesis and Molecular Recognition. Chem. Rev. 1997, 97, 3161–3196. 10.1021/cr9407577. - DOI - PubMed
    2. Trost B. M.; Machacek M. R.; Aponick A. Predicting Stereochemistry of Diphenylphosphino Benzoic Acid (DPPBA)-Based Palladium-Catalyzed Asymmetric Allylic Alkylation Reactions: a Working Model. Acc. Chem. Res. 2006, 39, 747–760. 10.1021/ar040063c. - DOI - PubMed
    3. Surry D. S.; Buchwald S. L. Diamine Ligands in Copper-Catalyzed Reactions. Chem. Sci. 2010, 1, 13–31. 10.1039/c0sc00107d. - DOI - PMC - PubMed
    1. Review:

    2. Kizirian J.-C. Chiral Tertiary Diamines in Asymmetric Synthesis. Chem. Rev. 2008, 108, 140–205. 10.1021/cr040107v. - DOI - PubMed

Publication types

LinkOut - more resources