Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr;22(4):287-302.
doi: 10.1002/jbm.820220404.

The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy

Affiliations

The effect of post-sintering heat treatments on the fatigue properties of porous coated Ti-6Al-4V alloy

S D Cook et al. J Biomed Mater Res. 1988 Apr.

Abstract

Porous coated Ti-6Al-4V alloy implant systems provide a biocompatible interface between implant and bone, resulting in firm fixation and potential long-term retention via bony ingrowth. In order to achieve an acceptable porous coating structure, the sintering protocol for Ti-6Al-4V alloy systems often requires that the material be heat treated above the beta transus. This transforms the as-received equiaxed microstructure, recommended for surgical implants, to a lamellar alpha-beta distribution, which has been shown to have the worst fatigue properties of the most common structures attainable in Ti-6Al-4V alloy. However, post-sintering heat treatments may be used to improve these properties by producing microstructures more resistant to crack initiation and propagation. This study investigated the influence of microstructural variations on the fatigue properties of porous coated Ti-6Al-4V alloy material. Nonporous coated and porous coated Ti-6Al-4V alloy fatigue specimens were subjected to a standard sintering heat treatment to produce a lamellar microstructure. In addition, two post-sintering heat treatments were used to produce coarse and fine acicular microstructures. Rotating beam (reversed bending) fatigue testing was performed and the endurance limits determined for the noncoated and porous coated microstructures. The values determined were 668 MPa (noncoated as-received equiaxed), 394 MPa (noncoated lamellar), 488 MPa (non-coated coarse acicular), 494 MPa (noncoated fine acicular), 140 MPa (porous coated lamellar), 161 MPa (porous coated coarse acicular), and 162 MPa (porous coated fine acicular). The noncoated coarse and fine acicular specimens displayed an approximate 25% increase over the noncoated lamellar specimens. The porous coated coarse and fine acicular specimens showed an approximate 15% improvement over the porous coated lamellar specimens.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources