Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun;45(6):1163-1169.
doi: 10.1038/s41366-021-00804-7. Epub 2021 Mar 16.

Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics

Affiliations
Review

Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics

Rachael Batabyal et al. Int J Obes (Lond). 2021 Jun.

Abstract

The COVID-19 pandemic has emerged as a public health crisis and has placed a significant burden on healthcare systems. Patients with underlying metabolic dysfunction, such as type 2 diabetes mellitus and obesity, are at a higher risk for COVID-19 complications, including multi-organ dysfunction, secondary to a deranged immune response, and cellular energy deprivation. These patients are at a baseline state of chronic inflammation associated with increased susceptibility to the severe immune manifestations of COVID-19, which are triggered by the cellular hypoxic environment and cytokine storm. The altered metabolic profile and energy generation of immune cells affect their activation, exacerbating the imbalanced immune response. Key immunometabolic interactions may inform the development of an efficacious treatment for COVID-19. Novel therapeutic approaches with repurposed drugs, such as PPAR agonists, or newly developed molecules such as the antagomirs, which block microRNA function, have shown promising results. Those treatments, alone or in combination, target both immune and metabolic pathways and are ideal for septic COVID-19 patients with an underlying metabolic condition.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Pathophysiologic changes in patients with COVID-19 and metabolic dysfunction and potential therapeutic agents.
This graph depicts the mechanisms by which SARS-CoV-2 infection leads to hyperimmune response and sepsis in patients with metabolic dysfunction as well as potential therapeutic molcules with their targets. Diffuse tissue hypoxia and viral replication in the pulmonary epithelium along with TLR activation result in immune cell activation, cytokine release and immunomodulation. SARS-CoV-2 severe acute respiratory syndrome coronavirus 2, IL interleukin, TLR toll-like receptor, HIF hypoxia-inducible factor, PPAR peroxisome proliferator-activated receptor.

References

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–33. doi: 10.1056/NEJMoa2001017. - DOI - PMC - PubMed
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. - PMC - PubMed
    1. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020;323:1775–76. - PubMed
    1. Lighter J, Phillips M, Hochman S, Sterling S, Johnson D, Francois F, et al. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin Infect Dis. 2020;71:896–7. - PMC - PubMed
    1. Falagas ME, Kompoti M. Obesity and infection. Lancet Infect Dis. 2006;6:438–46. - PubMed

MeSH terms