Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 31;143(12):4732-4740.
doi: 10.1021/jacs.1c00457. Epub 2021 Mar 17.

Bioinspired Diversification Approach Toward the Total Synthesis of Lycodine-Type Alkaloids

Affiliations

Bioinspired Diversification Approach Toward the Total Synthesis of Lycodine-Type Alkaloids

Hannah M S Haley et al. J Am Chem Soc. .

Abstract

Nitrogen heterocycles (azacycles) are common structural motifs in numerous pharmaceuticals, agrochemicals, and natural products. Many powerful methods have been developed and continue to be advanced for the selective installation and modification of nitrogen heterocycles through C-H functionalization and C-C cleavage approaches, revealing new strategies for the synthesis of targets containing these structural entities. Here, we report the first total syntheses of the lycodine-type Lycopodium alkaloids casuarinine H, lycoplatyrine B, lycoplatyrine A, and lycopladine F as well as the total synthesis of 8,15-dihydrohuperzine A through bioinspired late-stage diversification of a readily accessible common precursor, N-desmethyl-β-obscurine. Key steps in the syntheses include oxidative C-C bond cleavage of a piperidine ring in the core structure of the obscurine intermediate and site-selective C-H borylation of a pyridine nucleus to enable cross-coupling reactions.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Bioinspired plans for the synthesis of lycodine alkaloids.
Scheme 1
Scheme 1. Synthesis of the Bicyclo[3.3.1]nonane Core in N-Desmethyl-α-obscurine through Formal (3 + 3)-Cycloaddition
Reagents and conditions: (a) NaOEt, EtOH, 21 °C, then acrylonitrile, 0 to 21 °C, then TsOH, 145 °C (38%, > 13 g scale); (b) Zn(NO3)2·6H2O, acetone oxime, H2O, 90 °C, then vacuum, 120 °C (46%, > 2 g scale); (c) aq. H2O2, LiOH·H2O, MeOH, H2O, 21 °C (90%, 30 g scale); (d) PhSH, Na, THF, 21 °C, then 19, 85 °C; (e) NaBO3·H2O, AcOH, 40 °C (65%, 2 steps, > 17 g scale); (f) DBU, iPrOH, 0 °C, then acrylonitrile, 0 to 40 °C (60%, > 7 g scale); (g) ethylene glycol, p-TsOH, HC(OEt)3, 75 °C (97%); (h) LiAlH4, Et2O, 0 °C (84%, > 2 g scale); (i) aq. HClO4, 1,4-dioxane, 105 °C; (j) Boc2O, Et3N, THF, 60 °C (54%, 2 steps); (k) Pb(OAc)4, CHCl3, 21 °C (90%); (l) Tf2O, pyridine, CH2Cl2, −78 to 21 °C (78%).
Scheme 2
Scheme 2. Synthesis of C-Ring Cleaved Lycodine Alkaloids from Protected β-Obscurine.
Reagents and conditions: (a) RuO2·H2O, NaIO4, H2O, 21 °C, then 24, tBuOH, 60 °C (86%); (b) aq. 1 M LiOH, THF, 30 °C; (c) MeI, Ag2CO3, CHCl3, 75 °C (86%, 2 steps); (d) aq. 1 M LiOH, THF, 65 °C (97%); (e) PdBr2, DPE-Phos, Piv2O, Et3N, DMPU, 130 °C (65%); (f) TMSI, CHCl3, 65 °C (89%); (g) Sm, aq. 3 M HCl, 0 to 21 °C (84%); (h) Pd(dba)2, P(tBu)3, iPrCOCl, toluene, 90 °C (81%); (i) TMSI, CHCl3, 65 °C (41%).
Scheme 3
Scheme 3. Couplings of a Site-Selectively Functionalized Lycodine Congener in the Syntheses of C2-Substituted Alkaloids
Reagents and Conditions: (a) HCO2NH4, Pd(OAc)2, dppf, Et3N, DMF, 60 °C (99%); (b) B2 pin2, [Ir(COD)(OMe)]2, dtbbpy, THF, 80 °C; (c) CuBr2, MeOH, H2O, 80 °C (74%, 2 steps); (d) RuPhos Pd G4, Cs2CO3, toluene, 70 °C [(2′S)-33: 65%, (2′R)-33: 65%, 33 as epimeric mixture at C2′ with rac-32: 72%]; (e) NaOH, MeOH, 1,4-dioxane, 70 °C (f) aq. 6 M HCl, 70 °C [(2′S)-8: 90%, (2′R)-8: 68%; 2 steps]; (g) sBuLi, (+)- or (−)-sparteine, MTBE, −78 °C, then ZnCl2, THF, −78 to 21 °C, then 31, Pd(OAc)2, tBu3PHBF4, MTBE, 60 °C [(2′S)-36: 55%, (2′R)-36: 88%]; (h) aq. 6 M HCl, 21 °C [(2′S)-14: quantitative, (2′R)-14: 70%]; (i) 31, NiCl2-glyme, dtbbpy, Ir[dF(CF3)ppy]2(dtbbpy)PF6, Cs2CO3, DMF, 450 nm LED, 21 °C (84%); (j) PhOH, TMSCl, CH2Cl2, 21 °C; (k) 500 psi H2, Pd/C, CF3CO2H, MeOH, 21 °C (71%, 2 steps).

References

    1. Siengalewicz P.; Mulzer J.; Rinner U.. Chapter 1: Lycopodium Alkaloids—Synthetic Highlights and Recent Developments. In The Alkaloids: Chemistry and Biology; Knölker H.-J., Ed.; Academic Press: Cambridge, MA, 2013; Vol. 72, pp 1–151. - PubMed
    1. Ma X. Q.; Gang D. R. The Lycopodium alkaloids. Nat. Prod. Rep. 2004, 21, 752–772. 10.1039/b409720n. - DOI - PubMed
    1. Bödeker K. Lycopodin, das erste Alkaloïd der Gefässkryptogamen. Liebigs Ann. 1881, 208, 363–367. 10.1002/jlac.18812080308. - DOI
    1. Herzon S. B.; Tun M. K. M. The pharmacology and therapeutic potential of (−)-huperzine A. J. Exp. Pharmacol. 2012, 4, 113–123. 10.2147/JEP.S27084. - DOI - PMC - PubMed
    1. Qian Z. M.; Ke Y. Huperzine A: Is it an Effective Disease-Modifying Drug for Alzheimer’s Disease?. Front. Aging Neurosci. 2014, 6, 216.10.3389/fnagi.2014.00216. - DOI - PMC - PubMed

Publication types

MeSH terms