Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Apr 2;23(7):2687-2692.
doi: 10.1021/acs.orglett.1c00590. Epub 2021 Mar 17.

Visible-Light Responsive Sucrose-Containing Macrocyclic Host for Cations

Affiliations

Visible-Light Responsive Sucrose-Containing Macrocyclic Host for Cations

Patrycja Sokołowska et al. Org Lett. .

Abstract

Chiral photoresponsive host 1 was prepared by a high-yield Cs2CO3-templated macrocyclization. Trans-1 transforms into long-lived cis-1 (25 days) upon irradiation with green light, and the backward transformation is triggered by blue light. Both isomers prefer potassium among alkali metal cations, and cis-1 binds cations stronger than trans-1 (Kcis/Ktrans ≤ 4.1). 1H NMR titration experiments as well as density functional theory studies reveal that sucrose ring oxygen residues and azobenzene nitrogen atoms in 1 contribute to cation coordination.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Synthesis of Photoresponsive Chiral Host 1
Scheme 2
Scheme 2. (a) Proposed Mechanism of Alkali Metal Cation-Induced Stabilization of Intermediate Acyclic Polyether Leading to 1 and (b) Dependence of Reaction Yield on the Size of the Cation
Figure 1
Figure 1
Structures and macrocyclization yield (in parentheses) of reported systems containing an azobenzene switch.,,,−
Scheme 3
Scheme 3. Photoswitching of Host 1 (a–c and d) and Complexes of 1 with 10 equiv of Alkali Metal Triflates (b, c, and e)[a] in MeCN (50 μM) at 298.0 ± 0.1 K Using Green Light (LED 530 nm) and Blue Light (LED 410 nm), Respectively
Figure 2
Figure 2
Comparison of the chemical shift changes (Δδ) for anomeric proton CH(1) upon addition of cation triflates to the solution of hosts (a) trans-1 and (b) cis-1 in CD3CN. Fitted binding isotherms (gray lines). For the proton label, see Scheme 1.
Figure 3
Figure 3
Models of the energy-minimized host–guest complexes (a) [K⊂trans-1]+ and (b) [K⊂cis-1]+, where ⊂ denotes encapsulation.

References

    1. Yudin A. K. Chem. Sci. 2015, 6, 30–49. 10.1039/C4SC03089C. - DOI - PMC - PubMed
    2. Steed J. W.; Atwood J. L.. Supramolecular Chemistry, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2009.
    1. For recent reviews, see:

    2. Tecilla P.; Bonifazi D. Configurational Selection in Azobenzene-Based Supramolecular Systems Through Dual-Stimuli Processes. ChemistryOpen 2020, 9, 538–553. 10.1002/open.202000045. - DOI - PMC - PubMed
    3. Bianchi A.; Delgado-Pinar E.; García-España E.; Giorgi C.; Pina F. Highlights of metal ion-based photochemical switches. Coord. Chem. Rev. 2014, 260, 156–215. 10.1016/j.ccr.2013.09.023. - DOI
    4. Lee S.; Flood A. H. Photoresponsive receptors for binding and releasing anions. J. Phys. Org. Chem. 2013, 26, 79–86. 10.1002/poc.2973. - DOI
    5. Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem. Soc. Rev. 2011, 40, 3835–3853. 10.1039/c0cs00183j. - DOI - PubMed
    1. Wagner-Wysiecka E.; Łukasik N.; Biernat J. F.; Luboch E. Azo group (s) in selected macrocyclic compounds. J. Inclusion Phenom. Macrocyclic Chem. 2018, 90, 189–257. 10.1007/s10847-017-0779-4. - DOI - PMC - PubMed
    2. Li Z.; Liang J.; Xue W.; Liu G.; Liu S. H.; Yin J. Switchable azo-macrocycles: from molecules to functionalization. Supramol. Chem. 2014, 26, 54–65. 10.1080/10610278.2013.822970. - DOI
    3. Beharry A. A.; Woolley G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 2011, 40, 4422–4437. 10.1039/c1cs15023e. - DOI - PubMed
    4. Reuter R.; Wegner H. A. A chiral cyclotrisazobiphenyl: synthesis and photochemical properties. Org. Lett. 2011, 13, 5908–5911. 10.1021/ol202556z. - DOI - PubMed
    1. For selected examples, see:

    2. Wagner-Wysiecka E.; Rzymowski T.; Fonari M. S.; Kulmaczewski R.; Luboch E. Pyrrole azocrown ethers—synthesis, crystal structures, and fluorescence properties. Tetrahedron 2011, 67, 1862–1872. 10.1016/j.tet.2011.01.027. - DOI
    3. Malek-Ahmadi S.; Abdolmaleki A. Synthesis and characterization of new azo containing Schiff base macrocycle. Chin. Chem. Lett. 2011, 22, 439–442. 10.1016/j.cclet.2010.10.040. - DOI
    4. Kawamoto M.; Aoki T.; Wada T. Light-driven twisting behaviour of chiral cyclic compounds. Chem. Commun. 2007, 930–932. 10.1039/b616320c. - DOI - PubMed
    5. Shinkai S.; Manabe O. Photocontrol of ion extraction and ion transport by photofunctional crown ethers. Top. Curr. Chem. 1984, 121, 67.10.1007/3-540-12821-2_3. - DOI
    1. Basheer M. C.; Oka Y.; Mathews M.; Tamaoki N. A Light-Controlled Molecular Brake with Complete ON–OFF Rotation. Chem. - Eur. J. 2010, 16, 3489–3496. 10.1002/chem.200902123. - DOI - PubMed
    2. Nguyen T. T. T.; Türp D.; Wang D.; Nölscher B.; Laquai F.; Müllen K. A fluorescent, shape-persistent dendritic host with photoswitchable guest encapsulation and intramolecular energy transfer. J. Am. Chem. Soc. 2011, 133, 11194–111204. 10.1021/ja2022398. - DOI - PubMed

LinkOut - more resources