Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jun:202:111668.
doi: 10.1016/j.colsurfb.2021.111668. Epub 2021 Mar 1.

Design of amino-functionalized hollow mesoporous silica cube for enzyme immobilization and its application in synthesis of phosphatidylserine

Affiliations

Design of amino-functionalized hollow mesoporous silica cube for enzyme immobilization and its application in synthesis of phosphatidylserine

Yao Zhang et al. Colloids Surf B Biointerfaces. 2021 Jun.

Abstract

In this study, hollow mesoporous silica cube (HMSC) modified with amino (-NH2) were synthesized and applied in the immobilization of phospholipase D (PLD) via physical adsorption and chemical cross-linking strategy. The amino-functionalized nano carrier HMSC represented excellent immobilization ability and achieved 87.15 % immobilization rate. The immobilized PLD has wider pH application range and thermal stability, and maintained over 90% of the initial activity after incubation at 50 °C for 2 h. After 50 days of storage at 4 ℃, immobilized PLD retained 40.12 % of its initial activity while free PLD lost 88.28% of its initial activity. The modified HMSC with immobilized PLD (HMSC-NH2-PLD) retained 50.73% activities after 9 consecutive reuses. Using the HMSC-NH2-PLD, a high-efficient method for the conversion of phosphatidylserine (PS) from phosphatidylcholine (PC) and L-serine was proposed. The HMSC-NH2-PLD exhibited prominent enzymatic activity for PS synthesis, the maximal conversion of PS was 90.40% with a catalytic efficiency (CE) of 31.95 μmol / (g h under the optimal conditions. The research in this paper provides a sustainable and efficient biocatalysis application for PS synthesis.

Keywords: Immobilization; Phospholipase; hosphatidylserine.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources