Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2021 Jun 1:622:114168.
doi: 10.1016/j.ab.2021.114168. Epub 2021 Mar 16.

Recent advances on protein-based quantification of extracellular vesicles

Affiliations
Review

Recent advances on protein-based quantification of extracellular vesicles

Teran Cloet et al. Anal Biochem. .

Abstract

Extracellular vesicles (EVs) are secreted by almost all cells into the circulatory system and have the important function of intercellular communication. Ranging in size from 50 to 1000 nm, they are further classified based on origin, size, physical properties and function. EVs have shown the potential for studying various physiological and pathological processes, such as characterizing their parent cells with molecular markers that could further signify diseases. Proteins within EVs are the building blocks for the vesicles to function within a biological system. Isolation and proteomic profiling of EVs can advance the understanding of their biogenesis and functions, which can give further insight of how they can be used in clinical settings. However, the nanoscale size of EVs, which is much smaller than that of cells, comprises a major challenge for EV isolation and the characterization of their protein cargos. With the recent advances of bioanalytical techniques such as lab-on-a-chip devices and innovated flow cytometry, the quantification of EV proteins from a small number of vesicles down to the single vesicle level has been achieved, shining light on the promising applications of these small vesicles for early disease diagnosis and treatment monitoring. In this article, we first briefly review conventional EV protein determination technologies and their limitations, followed by detailed description and analysis of emerging technologies used for EV protein quantification, including optical, non-optical, microfluidic, and single vesicle detection methods. The pros and cons of these technologies are compared and the current challenges are outlined. Future perspectives and potential research directions of the EV protein analysis methods are discussed.

Keywords: Biosensors; Extracellular vesicles (EVs); Microfluidics; Proteins; Sensitivity; Single vesicle analysis (SVA).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources