Addiction-related neuroadaptations following chronic nicotine exposure
- PMID: 33742685
- DOI: 10.1111/jnc.15356
Addiction-related neuroadaptations following chronic nicotine exposure
Abstract
The addiction-relevant molecular, cellular, and behavioral actions of nicotine are derived from its stimulatory effects on neuronal nicotinic acetylcholine receptors (nAChRs) in the central nervous system. nAChRs expressed by dopamine-containing neurons in the ventral midbrain, most notably in the ventral tegmental area (VTA), contribute to the reward-enhancing properties of nicotine that motivate the use of tobacco products. nAChRs are also expressed by neurons in brain circuits that regulate aversion. In particular, nAChRs expressed by neurons in the medial habenula (mHb) and the interpeduncular nucleus (IPn) to which the mHb almost exclusively projects regulate the "set-point" for nicotine aversion and control nicotine intake. Different nAChR subtypes are expressed in brain reward and aversion circuits and nicotine intake is titrated to maximally engage reward-enhancing nAChRs while minimizing the recruitment of aversion-promoting nAChRs. With repeated exposure to nicotine, reward- and aversion-related nAChRs and the brain circuits in which they are expressed undergo adaptations that influence whether tobacco use will transition from occasional to habitual. Genetic variation that influences the sensitivity of addiction-relevant brain circuits to the actions of nicotine also influence the propensity to develop habitual tobacco use. Here, we review some of the key advances in our understanding of the mechanisms by which nicotine acts on brain reward and aversion circuits and the adaptations that occur in these circuits that may drive addiction to nicotine-containing tobacco products.
Keywords: Nicotine; addiction; desensitization; dopamine; habenula; interpeduncular nucleus; nicotinic acetylcholine receptor; reward; withdrawal.
© 2021 International Society for Neurochemistry.
Similar articles
-
Neurobiological Mechanisms of Nicotine Reward and Aversion.Pharmacol Rev. 2022 Jan;74(1):271-310. doi: 10.1124/pharmrev.121.000299. Pharmacol Rev. 2022. PMID: 35017179 Free PMC article. Review.
-
α3* Nicotinic Acetylcholine Receptors in the Habenula-Interpeduncular Nucleus Circuit Regulate Nicotine Intake.J Neurosci. 2021 Feb 24;41(8):1779-1787. doi: 10.1523/JNEUROSCI.0127-19.2020. Epub 2020 Dec 30. J Neurosci. 2021. PMID: 33380469 Free PMC article.
-
β4-Nicotinic Receptors Are Critically Involved in Reward-Related Behaviors and Self-Regulation of Nicotine Reinforcement.J Neurosci. 2020 Apr 22;40(17):3465-3477. doi: 10.1523/JNEUROSCI.0356-19.2020. Epub 2020 Mar 17. J Neurosci. 2020. PMID: 32184221 Free PMC article.
-
The habenulo-interpeduncular pathway in nicotine aversion and withdrawal.Neuropharmacology. 2015 Sep;96(Pt B):213-22. doi: 10.1016/j.neuropharm.2014.11.019. Epub 2014 Dec 2. Neuropharmacology. 2015. PMID: 25476971 Free PMC article. Review.
-
Nicotine aversion: Neurobiological mechanisms and relevance to tobacco dependence vulnerability.Neuropharmacology. 2014 Jan;76 Pt B(0 0):533-44. doi: 10.1016/j.neuropharm.2013.09.008. Epub 2013 Sep 18. Neuropharmacology. 2014. PMID: 24055497 Free PMC article. Review.
Cited by
-
Non-nicotine constituents in cigarette smoke extract enhance nicotine addiction through monoamine oxidase A inhibition.Front Neurosci. 2022 Nov 24;16:1058254. doi: 10.3389/fnins.2022.1058254. eCollection 2022. Front Neurosci. 2022. PMID: 36507317 Free PMC article.
-
Hyperconnectivity of two separate long-range cholinergic systems contributes to the reorganization of the brain functional connectivity during nicotine withdrawal in male mice.bioRxiv [Preprint]. 2023 Mar 31:2023.03.29.534836. doi: 10.1101/2023.03.29.534836. bioRxiv. 2023. Update in: eNeuro. 2023 Jun 27;10(6):ENEURO.0019-23.2023. doi: 10.1523/ENEURO.0019-23.2023. PMID: 37034602 Free PMC article. Updated. Preprint.
-
Novel Pharmacotherapies in Parkinson's Disease.Neurotox Res. 2021 Aug;39(4):1381-1390. doi: 10.1007/s12640-021-00375-5. Epub 2021 May 18. Neurotox Res. 2021. PMID: 34003454 Free PMC article. Review.
-
Cannabis Use and Neuroadaptation: A Call for Δ 9 -Tetrahydrocannabinol Challenge Studies.Front Psychiatry. 2022 Apr 14;13:870750. doi: 10.3389/fpsyt.2022.870750. eCollection 2022. Front Psychiatry. 2022. PMID: 35492732 Free PMC article.
-
Hyperconnectivity of Two Separate Long-Range Cholinergic Systems Contributes to the Reorganization of the Brain Functional Connectivity during Nicotine Withdrawal in Male Mice.eNeuro. 2023 Jun 27;10(6):ENEURO.0019-23.2023. doi: 10.1523/ENEURO.0019-23.2023. Print 2023 Jun. eNeuro. 2023. PMID: 37295945 Free PMC article.
References
-
- Wills, L., Ables, J. L., Braunscheidel, K. M., Caligiuri, S. P. B., Elayouby, K. S., Fillinger, C., Ishikawa, M., Moen, J., & Kenny, P. J. (2021). Neurobiological mechanisms of nicotine reward and aversion. Pharmacology Reviews. In Press.
-
- Ables, J. L., Gorlich, A., Antolin-Fontes, B., Wang, C., Lipford, S. M., Riad, M. H., Ren, J., Hu, F., Luo, M., Kenny, P. J., Heintz, N., & Ibanez-Tallon, I. (2017). Retrograde inhibition by a specific subset of interpeduncular alpha5 nicotinic neurons regulates nicotine preference. Proceedings of the National Academy of Sciences of the United States of America, 114(49), 13012-13017.
-
- Ahnallen, C. G., Liverant, G. I., Gregor, K. L., Kamholz, B. W., Levitt, J. J., Gulliver, S. B., Pizzagalli, D. A., Koneru, V. K., & Kaplan, G. B. (2012). The relationship between reward-based learning and nicotine dependence in smokers with schizophrenia. Psychiatry Research, 196(1), 9-14. https://doi.org/10.1016/j.psychres.2011.09.011
-
- Albuquerque, E. X., Pereira, E. F., Alkondon, M., & Rogers, S. W. (2009). Mammalian nicotinic acetylcholine receptors: From structure to function. Physiological Reviews, 89(1), 73-120. https://doi.org/10.1152/physrev.00015.2008
-
- Alkondon, M., Pereira, E. F., Eisenberg, H. M., & Albuquerque, E. X. (1999). Choline and selective antagonists identify two subtypes of nicotinic acetylcholine receptors that modulate GABA release from CA1 interneurons in rat hippocampal slices. Journal of Neuroscience, 19(7), 2693-2705. https://doi.org/10.1523/JNEUROSCI.19-07-02693.1999
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources