Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight
- PMID: 33743077
- DOI: 10.1007/s00429-021-02257-0
Neurochemical changes in the primate lateral geniculate nucleus following lesions of striate cortex in infancy and adulthood: implications for residual vision and blindsight
Abstract
Following lesions of the primary visual cortex (V1), the lateral geniculate nucleus (LGN) undergoes substantial cell loss due to retrograde degeneration. However, visually responsive neurons remain in the degenerated sector of LGN, and these have been implicated in mediation of residual visual capacities that remain within the affected sectors of the visual field. Using immunohistochemistry, we compared the neurochemical characteristics of LGN neurons in V1-lesioned marmoset monkeys (Callithrix jacchus) with those of non-lesioned control animals. We found that GABAergic neurons form approximately 6.5% of the neuronal population in the normal LGN, where most of these cells express the calcium-binding protein parvalbumin. Following long-term V1 lesions in adult monkeys, we observed a marked increase (~ sevenfold) in the proportion of GABA-expressing neurons in the degenerated sector of the LGN, indicating that GABAergic cells are less affected by retrograde degeneration in comparison with magno- and parvocellular projection neurons. In addition, following early postnatal V1 lesions and survival into adulthood, we found widespread expression of GABA in putative projection neurons, even outside the degenerated sectors (lesion projection zones). Our findings show that changes in the ratio of GABAergic neurons in LGN need to be taken into account in the interpretation of the mechanisms of visual abilities that survive V1 lesions in primates.
Keywords: Blindsight; Gamma amino butyric acid (GABA); Lateral geniculate nucleus; Marmoset; Occipital lesions.
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
References
-
- Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 42:27–37 - PubMed
-
- Atapour N, Worthy KH, Lui LL, Yu HH, Rosa MGP (2017) Neuronal degeneration in the dorsal lateral geniculate nucleus following lesions of primary visual cortex: comparison of young adult and geriatric marmoset monkeys. Brain Struct Funct 222:3283–3293 - PubMed
-
- Atapour N, Majka P, Wolkowicz IH, Malamanova D, Worthy KH, Rosa MGP (2019) Neuronal distribution across the cerebral cortex of the marmoset monkey (Callithrix jacchus). Cereb Cortex 29:3836–3863 - PubMed
-
- Boire D, Théoret H, Ptito M (2002) Stereological evaluation of neurons and glia in the monkey dorsal lateral geniculate nucleus following an early cerebral hemispherectomy. Exp Brain Res 142:208–220 - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
