Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 May:117:103746.
doi: 10.1016/j.jbi.2021.103746. Epub 2021 Mar 19.

Automatic phenotyping of electronical health record: PheVis algorithm

Affiliations
Free article

Automatic phenotyping of electronical health record: PheVis algorithm

Thomas Ferté et al. J Biomed Inform. 2021 May.
Free article

Abstract

Electronic Health Records (EHRs) often lack reliable annotation of patient medical conditions. Phenorm, an automated unsupervised algorithm to identify patient medical conditions from EHR data, has been developed. PheVis extends PheNorm at the visit resolution. PheVis combines diagnosis codes together with medical concepts extracted from medical notes, incorporating past history in a machine learning approach to provide an interpretable parametric predictor of the occurrence probability for a given medical condition at each visit. PheVis is applied to two real-world use-cases using the datawarehouse of the University Hospital of Bordeaux: i) rheumatoid arthritis, a chronic condition; ii) tuberculosis, an acute condition. Cross-validated AUROC were respectively 0.943 [0.940; 0.945] and 0.987 [0.983; 0.990]. Cross-validated AUPRC were respectively 0.754 [0.744; 0.763] and 0.299 [0.198; 0.403]. PheVis performs well for chronic conditions, though absence of exclusion of past medical history by natural language processing tools limits its performance in French for acute conditions. It achieves significantly better performance than state-of-the-art unsupervised methods especially for chronic diseases.

Keywords: Electronic health records; High-throughput phenotyping; Phenotypic big data; Precision medicine.

PubMed Disclaimer

LinkOut - more resources