Trimethylamine N-oxide (TMAO) in human health
- PMID: 33746664
- PMCID: PMC7975634
- DOI: 10.17179/excli2020-3239
Trimethylamine N-oxide (TMAO) in human health
Abstract
Due to numerous links between trimethylamine-N-oxide (TMAO) and various disorders and diseases, this topic is very popular and is often taken up by researchers. TMAO is a low molecular weight compound that belongs to the class of amine oxides. It is formed by the process of oxidation of trimethylamine (TMA) by the hepatic flavin monooxygenases (FMO1 and FMO3). TMAO is mainly formed from nutritional substrates from the metabolism of phosphatidylcholine/choline, carnitine, betaine, dimethylglycine, and ergothioneine by intestinal microflora in the colon. Its level is determined by many factors, such as age, gender, diet, intestinal microflora composition, kidney function, and also liver flavin monooxygenase activity. Many studies report a positive relationship between the level of TMAO concentration and the development of various diseases, such as cardiovascular diseases and cardiorenal disorders, including atherosclerosis, hypertension, ischemic stroke, atrial fibrillation, heart failure, acute myocardial infarction, and chronic kidney disease, and also diabetes mellitus, metabolic syndrome, cancers (stomach, colon), as well as neurological disorders. In this review, we have summarized the current knowledge on the effects of TMAO on human health, the relationship between TMAO and intestinal microbiota, the role of TMAO in different diseases, and current analytical techniques used in TMAO determination in body fluids.
Keywords: TMA; TMAO; analytical technique; diseases; human health; trimethylamine; trimethylamine N-oxide.
Copyright © 2021 Gatarek et al.
Figures



References
-
- Al-Rubaye H, Perfetti G, Kaski JC. The role of microbiota in cardiovascular risk: Focus on trimethylamine oxide. Curr Probl Cardiol. 2019;44:182–196. - PubMed
-
- Awwad HM, Geisel J, Obeid R. Determination of trimethylamine, trimethylamine N-oxide, and taurine in human plasma and urine by UHPLC-MS/MS technique. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1038:12–18. - PubMed
-
- Bain MA, Faull R, Fornasini G, Milne RW, Evans AM. Affiliations expand accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol Dial Transplant. 2006;21:1300–1304. - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical