Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter
- PMID: 33747729
- PMCID: PMC7967051
- DOI: 10.1002/advs.202003155
Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter
Abstract
The demand for face masks is increasing exponentially due to the coronavirus pandemic and issues associated with airborne particulate matter (PM). However, both conventional electrostatic- and nanosieve-based mask filters are single-use and are not degradable or recyclable, which creates serious waste problems. In addition, the former loses function under humid conditions, while the latter operates with a significant air-pressure drop and suffers from relatively fast pore blockage. Herein, a biodegradable, moisture-resistant, highly breathable, and high-performance fibrous mask filter is developed. Briefly, two biodegradable microfiber and nanofiber mats are integrated into a Janus membrane filter and then coated by cationically charged chitosan nanowhiskers. This filter is as efficient as the commercial N95 filter and removes 98.3% of 2.5 µm PM. The nanofiber physically sieves fine PM and the microfiber provides a low pressure differential of 59 Pa, which is comfortable for human breathing. In contrast to the dramatic performance decline of the commercial N95 filter when exposed to moisture, this filter exhibits negligible performance loss and is therefore multi-usable because the permanent dipoles of the chitosan adsorb ultrafine PM (e.g., nitrogen and sulfur oxides). Importantly, this filter completely decomposes within 4 weeks in composting soil.
Keywords: biodegradability; chitosan; face masks; particulate matter; polybutylene succinate.
© 2021 The Authors. Published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning.J Colloid Interface Sci. 2022 Jan 15;606(Pt 2):961-970. doi: 10.1016/j.jcis.2021.08.079. Epub 2021 Aug 17. J Colloid Interface Sci. 2022. PMID: 34487943 Free PMC article.
-
Electrostatic Charge Retention in PVDF Nanofiber-Nylon Mesh Multilayer Structure for Effective Fine Particulate Matter Filtration for Face Masks.Polymers (Basel). 2021 Sep 24;13(19):3235. doi: 10.3390/polym13193235. Polymers (Basel). 2021. PMID: 34641051 Free PMC article.
-
Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols.Sep Purif Technol. 2020 Aug 15;245:116887. doi: 10.1016/j.seppur.2020.116887. Epub 2020 Apr 22. Sep Purif Technol. 2020. PMID: 32372877 Free PMC article.
-
Ultrafine PVDF Nanofibers for Filtration of Air-Borne Particulate Matters: A Comprehensive Review.Polymers (Basel). 2021 Jun 3;13(11):1864. doi: 10.3390/polym13111864. Polymers (Basel). 2021. PMID: 34205188 Free PMC article. Review.
-
Application of cellulose nanofiber as a promising air filter for adsorbing particulate matter and carbon dioxide.Int J Biol Macromol. 2023 Jul 31;244:125344. doi: 10.1016/j.ijbiomac.2023.125344. Epub 2023 Jun 15. Int J Biol Macromol. 2023. PMID: 37327938 Review.
Cited by
-
Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications.Nanomaterials (Basel). 2022 Apr 11;12(8):1295. doi: 10.3390/nano12081295. Nanomaterials (Basel). 2022. PMID: 35458003 Free PMC article.
-
Screen-printing of chitosan and cationised cellulose nanofibril coatings for integration into functional face masks with potential antiviral activity.Int J Biol Macromol. 2023 May 1;236:123951. doi: 10.1016/j.ijbiomac.2023.123951. Epub 2023 Mar 9. Int J Biol Macromol. 2023. PMID: 36898451 Free PMC article.
-
Nanocellulose-based membrane as a potential material for high performance biodegradable aerosol respirators for SARS-CoV-2 prevention: a review.Cellulose (Lond). 2022;29(15):8001-8024. doi: 10.1007/s10570-022-04792-3. Epub 2022 Aug 17. Cellulose (Lond). 2022. PMID: 35990792 Free PMC article. Review.
-
Pilot-Scale Melt Electrospinning of Polybutylene Succinate Fiber Mats for a Biobased and Biodegradable Face Mask.Polymers (Basel). 2023 Jul 3;15(13):2936. doi: 10.3390/polym15132936. Polymers (Basel). 2023. PMID: 37447581 Free PMC article.
-
A review of disposable facemasks during the COVID-19 pandemic: A focus on microplastics release.Chemosphere. 2023 Jan;312(Pt 1):137178. doi: 10.1016/j.chemosphere.2022.137178. Epub 2022 Nov 8. Chemosphere. 2023. PMID: 36368541 Free PMC article. Review.
References
-
- a) Liao L., Xiao W., Zhao M., Yu X., Wang H., Wang Q., Chu S., Cui Y., ACS Nano 2020, 14, 6348; - PubMed
- b) Shortage of personal protective equipment endangering health workers worldwide, https://www.who.int/news-room/detail/03-03-2020-shortage-of-personal-pro... (accessed: June 2020);
- c) Kutter J. S., Spronken M. I., Fraaij P. L., Fouchier R. A. M., Herfst S., Curr. Opin. Virol. 2018, 28, 142; - PMC - PubMed
- d) Recommended Guidance for Extended Use and Limited Reuse of N95 Filtering Facepiece Respirators in Healthcare Settings, https://www.cdc.gov/niosh/topics/hcwcontrols/recommendedguidanceextuse.html (accessed: June 2020).
-
- a) Streets D. G., Wu Y., Chin M., Geophys. Res. Lett. 2006, 33, L15806;
- b) Tai A. P. K., Mickley L. J., Jacob D. J., Atmos. Environ. 2010, 44, 3976;
- c) Racherla P. N., Adams P. J., J. Geophys. Res.: Atmos. 2006, 111, D24103;
- d) Grantz D. A., Garner J. H. B., Johnson D. W., Environ. Int. 2003, 29, 213; - PubMed
- e) Davidson C. I., Phalen R. F., Solomon P. A., Aerosol Sci. Technol. 2005, 39, 737;
- f) Kim K.‐H., Kabir E., Kabir S., Environ. Int. 2015, 74, 136; - PubMed
- g) Choi S., Hwang Y. J., Lee H.‐J., Kim M. K., Kim S. G., Kim H. S., J. Text. Sci. Eng. 2018, 55, 89;
- h) Cohen A. J., Brauer M., Burnett R., Anderson H. R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Dandona L., Dandona R., Feigin V., Freedman G., Hubbell B., Jobling A., Kan H., Knibbs L., Liu Y., Martin R., Morawska L., Pope C. A. III, Shin H., Straif K., Shaddick G., Thomas M., Dingenen R. V., Donkelaar A. V., Vos T., Murray C. J. L., Forouzanfar M. H., Lancet 2017, 389, 1907; - PMC - PubMed
- i) Hamra G. B., Guha N., Cohen A., Laden F., Raaschou‐Nielsen O., Samet J. M., Vineis P., Environ. Health Perspect. 2014, 122, 906. - PMC - PubMed
-
- a) Bian Y., Wang R., Wang S., Yao C., Ren W., Chen C., Zhang L., J. Mater. Chem. A 2018, 6, 15807;
- b) Zhu M., Han J., Wang F., Shao W., Xiong R., Zhang Q., Pan H., Yang Y., Samal S. K., Zhang F., Huang C., Macromol. Mater. Eng. 2017, 302, 1600353;
- c) Leung W. W.‐F., Hung C.‐H., Sep. Purif. Technol. 2012, 92, 174;
- d) Jing L., Shim K., Toe C. Y., Fang T., Zhao C., Amal R., Sun K.‐N., Kim J. H., Ng Y. H., ACS Appl. Mater. Interfaces 2016, 8, 7030; - PubMed
- e) Choi S., Kim H. R., Kim H. S., Polym. Int. 2018, 68, 764;
- f) Zhang S., Liu H., Yin X., Yu J., Ding B., ACS Appl. Mater. Interfaces 2016, 8, 8086; - PubMed
- g) Wang N., Si Y., Wang N., Sun G., El‐Newehy M., Al‐Deyab S. S., Ding B., Sep. Purif. Technol. 2014, 126, 44.
-
- a) Liu C., Hsu P.‐C., Lee H.‐W., Ye M., Zheng G., Liu N., Li W., Cui Y., Nat. Commun. 2015, 6, 6205; - PubMed
- b) Zhang R., Liu C., Hsu P.‐C., Zhang C., Liu N., Zhang J., Lee H. R., Lu Y., Qiu Y., Chu S., Cui Y., Nano Lett. 2016, 16, 3642; - PubMed
- c) Khalid B., Bai X., Wei H., Huang Y., Wu H., Cui Y., Nano Lett. 2017, 17, 1140; - PubMed
- d) Zhang S., Liu H., Tang N., Zhou S., Yu J., Ding B., Adv. Mater. 2020, 32, 2002361; - PMC - PubMed
- e) Raynor P. C., Chae S. J., J. Occup. Environ. Hyg. 2004, 1, 463; - PubMed
- f) Thakur R., Das D., Sep. Purif. Rev. 2013, 42, 87;
- g) Li P., Wang C., Zhang Y., Wei F., Small 2014, 10, 4543; - PubMed
- h) Zhang Y., Yuan S., Feng X., Li H., Zhou J., Wang B., J. Am. Chem. Soc. 2016, 138, 5785; - PubMed
- i) Wang S., Zhao X., Yin X., Yu J., Ding B., ACS Appl. Mater. Interfaces 2016, 8, 23985; - PubMed
- j) Xiong Z.‐C., Yang R.‐L., Zhu Y.‐J., Chen F.‐F., Dong L.‐Y., J. Mater. Chem. A 2017, 5, 17482.
-
- a) Kim T., Jeon H., Jegal J., Kim J. H., Yang H., Park J., Oh D. X., Hwang S. Y., RSC Adv. 2018, 8, 15389; - PMC - PubMed
- b) Tran T. H., Nguyen H.‐L., Hwang D. S., Lee J. Y., Cha H. G., Koo J. M., Hwang S. Y., Park J., Oh D. X., Carbohydr. Polym. 2019, 205, 392; - PubMed
- c) Grenha A., Al‐Qadi S., Seijo B., Remuñán‐López C., J. Drug Delivery Sci. Technol. 2010, 20, 33;
- d) Islam N., Dmour I., Taha M. O., Heliyon 2019, 5, e01684; - PMC - PubMed
- e) Yu H. S., Park H., Tran T. H., Hwang S. Y., Na K., Lee E. S., Oh K. T., Oh D. X., Park J., Pharmaceutics 2019, 11, 258; - PMC - PubMed
- f) de Jesús Valle M. J., Dinis‐Oliveira R. J., Carvalho F., Bastos M. L., Navarro A. S., J. Biomater. Sci., Polym. Ed. 2008, 19, 387; - PubMed
- g) Zhang B., Zhang Z.‐G., Yan X., Wang X.‐X., Zhao H., Guo J., Feng J.‐Y., ‐Ze. Long Y., Nanoscale 2017, 9, 4154; - PubMed
- h) Kim T., Tran T. H., Hwang S. Y., Park J., Oh D. X., Kim B.‐S., ACS Nano 2019, 13, 3796. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources