Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli
- PMID: 33748869
- DOI: 10.1007/s00449-021-02552-4
Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli
Abstract
L-tryptophan (L-trp) production in Escherichia coli has been developed by employing random mutagenesis and selection for a long time, but this approach produces an unclear genetic background. Here, we generated the L-trp overproducer TPD5 by combining an intracellular L-trp biosensor and fluorescence-activated cell sorting (FACS) in E. coli, and succeeded in elucidating the genetic basis for L-trp overproduction. The most significant identified positive mutations affected TnaA (deletion), AroG (S211F), TrpE (A63V), and RpoS (nonsense mutation Q33*). The underlying structure-function relationships of the feedback-resistant AroG (S211F) and TrpE (A63V) mutants were uncovered based on protein structure modeling and molecular dynamics simulations, respectively. According to transcriptomic analysis, the global regulator RpoS not only has a great influence on cell growth and morphology, but also on carbon utilization and the direction of carbon flow. Finally, by balancing the concentrations of the L-trp precursors' serine and glutamine based on the above analysis, we further increased the titer of L-trp to 3.18 g/L with a yield of 0.18 g/g. The analysis of the genetic characteristics of an L-trp overproducing E. coli provides valuable information on L-trp synthesis and elucidates the phenotype and complex cellular properties in a high-yielding strain, which opens the possibility to transfer beneficial mutations and reconstruct an overproducer with a clean genetic background.
Keywords: Genome sequencing; L-trp; Protein structure; Transcriptional regulator; Transcriptome analysis.
Similar articles
-
Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.Appl Microbiol Biotechnol. 2017 Jan;101(2):559-568. doi: 10.1007/s00253-016-7772-5. Epub 2016 Sep 6. Appl Microbiol Biotechnol. 2017. PMID: 27599980
-
Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in Synechocystis sp. Strain PCC 6803.Appl Environ Microbiol. 2020 Apr 17;86(9):e02816-19. doi: 10.1128/AEM.02816-19. Print 2020 Apr 17. Appl Environ Microbiol. 2020. PMID: 32144109 Free PMC article.
-
Establishment of a Biosensor-based High-Throughput Screening Platform for Tryptophan Overproduction.ACS Synth Biol. 2021 Jun 18;10(6):1373-1383. doi: 10.1021/acssynbio.0c00647. Epub 2021 Jun 3. ACS Synth Biol. 2021. PMID: 34081459
-
Engineering of Shikimate Pathway and Terminal Branch for Efficient Production of L-Tryptophan in Escherichia coli.Int J Mol Sci. 2023 Jul 24;24(14):11866. doi: 10.3390/ijms241411866. Int J Mol Sci. 2023. PMID: 37511626 Free PMC article.
-
Metabolic engineering for improving L-tryptophan production in Escherichia coli.J Ind Microbiol Biotechnol. 2019 Jan;46(1):55-65. doi: 10.1007/s10295-018-2106-5. Epub 2018 Nov 13. J Ind Microbiol Biotechnol. 2019. PMID: 30426284 Review.
Cited by
-
Synergetic engineering of Escherichia coli for efficient production of l-tyrosine.Synth Syst Biotechnol. 2023 Nov 7;8(4):724-731. doi: 10.1016/j.synbio.2023.10.005. eCollection 2023 Dec. Synth Syst Biotechnol. 2023. PMID: 38033756 Free PMC article.
-
Engineering Escherichia coli for Efficient Production of L-Tryptophan.Appl Biochem Biotechnol. 2025 Jun;197(6):4096-4108. doi: 10.1007/s12010-025-05228-x. Epub 2025 Mar 26. Appl Biochem Biotechnol. 2025. PMID: 40138134
-
Transcriptomics and metabolomics analysis of L-phenylalanine overproduction in Escherichia coli.Microb Cell Fact. 2023 Apr 6;22(1):65. doi: 10.1186/s12934-023-02070-w. Microb Cell Fact. 2023. PMID: 37024921 Free PMC article.
References
-
- Yu AQ, Pratomo Juwono NK, Foo JL, Leong SSJ, Chang MW (2016) Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids. Metab Eng 34:36–43. https://doi.org/10.1016/j.ymben.2015.12.005 - DOI - PubMed
-
- Rogers JK, Church GM (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc Natl Acad Sci USA 113:2388–2393. https://doi.org/10.1073/pnas.1600375113 - DOI - PubMed - PMC
-
- Pontrelli S, Fricke RCB, Teoh ST, Lavina WA, Putri SP, Fitz-Gibbon S, Chung M, Pellegrini M, Fukusaki E, Liao JC (2018) Metabolic repair through emergence of new pathways in Escherichia coli. Nat Chem Biol 14:1005–1009. https://doi.org/10.1038/s41589-018-0149-6 - DOI - PubMed
-
- Barata D, van Blitterswijk C, Habibovic P (2016) High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Acta Biomater 34:1–20. https://doi.org/10.1016/j.actbio.2015.09.009 - DOI - PubMed
-
- Xiao Y, Bowen CH, Liu D, Zhang F (2016) Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12:339–344. https://doi.org/10.1038/nchembio.2046 - DOI - PubMed
MeSH terms
Substances
Grants and funding
- TSBICIP-KJGG-004-03/Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project
- 2020YFA0907800/National Key R&D Program of China
- 2018YFA0901402/National Key R&D Plan Special Project for "Synthetic biology"
- 2019YFA0904901/National Key R&D Plan Special Project for "Synthetic biology"
- 31800086/National Natural Science Foundation of China
LinkOut - more resources
Full Text Sources
Other Literature Sources