Selective CRAF Inhibition Elicits Transactivation
- PMID: 33750116
- PMCID: PMC8041278
- DOI: 10.1021/jacs.0c11958
Selective CRAF Inhibition Elicits Transactivation
Abstract
Discovering molecules that regulate closely related protein isoforms is challenging, and in many cases the consequences of isoform-specific pharmacological regulation remains unknown. RAF isoforms are commonly mutated oncogenes that serve as effector kinases in MAP kinase signaling. BRAF/CRAF heterodimers are believed to be the primary RAF signaling species, and many RAF inhibitors lead to a "paradoxical activation" of RAF kinase activity through transactivation of the CRAF protomer; this leads to resistance mechanisms and secondary tumors. It has been hypothesized that CRAF-selective inhibition might bypass paradoxical activation, but no CRAF-selective inhibitor has been reported and the consequences of pharmacologically inhibiting CRAF have remained unknown. Here, we use bio-orthogonal ligand tethering (BOLT) to selectively target inhibitors to CRAF. Our results suggest that selective CRAF inhibition promotes paradoxical activation and exemplify how BOLT may be used to triage potential targets for drug discovery before any target-selective small molecules are known.
Conflict of interest statement
The authors declare the following competing financial interest(s): A.P.T., I.L.D., and J.H. are employees of AstraZeneca.
Figures



Similar articles
-
RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF.Nature. 2010 Mar 18;464(7287):427-30. doi: 10.1038/nature08902. Nature. 2010. PMID: 20179705 Free PMC article.
-
The AMPK inhibitor overcomes the paradoxical effect of RAF inhibitors through blocking phospho-Ser-621 in the C terminus of CRAF.J Biol Chem. 2018 Sep 14;293(37):14276-14284. doi: 10.1074/jbc.RA118.004597. Epub 2018 Jul 20. J Biol Chem. 2018. PMID: 30030377 Free PMC article.
-
Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma.Cancer Res. 2008 Jun 15;68(12):4853-61. doi: 10.1158/0008-5472.CAN-07-6787. Cancer Res. 2008. PMID: 18559533 Free PMC article.
-
Targeting CRAF kinase in anti-cancer therapy: progress and opportunities.Mol Cancer. 2023 Dec 18;22(1):208. doi: 10.1186/s12943-023-01903-x. Mol Cancer. 2023. PMID: 38111008 Free PMC article. Review.
-
The role of CRAF in cancer progression: from molecular mechanisms to precision therapies.Nat Rev Cancer. 2024 Feb;24(2):105-122. doi: 10.1038/s41568-023-00650-x. Epub 2024 Jan 9. Nat Rev Cancer. 2024. PMID: 38195917 Review.
Cited by
-
Chemogenetics of cell surface receptors: beyond genetic and pharmacological approaches.RSC Chem Biol. 2022 Jan 27;3(3):269-287. doi: 10.1039/d1cb00195g. eCollection 2022 Mar 9. RSC Chem Biol. 2022. PMID: 35359495 Free PMC article. Review.
-
A Conserved Mechanism for Hormesis in Molecular Systems.Dose Response. 2022 Aug 2;20(3):15593258221109335. doi: 10.1177/15593258221109335. eCollection 2022 Jul-Sep. Dose Response. 2022. PMID: 35936511 Free PMC article.
-
The Pan-RAF-MEK Nondegrading Molecular Glue NST-628 Is a Potent and Brain-Penetrant Inhibitor of the RAS-MAPK Pathway with Activity across Diverse RAS- and RAF-Driven Cancers.Cancer Discov. 2024 Jul 1;14(7):1190-1205. doi: 10.1158/2159-8290.CD-24-0139. Cancer Discov. 2024. PMID: 38588399 Free PMC article.
-
Modulation of the 14-3-3σ/C-RAF "auto"inhibited complex by molecular glues.bioRxiv [Preprint]. 2025 Jul 31:2025.07.30.667769. doi: 10.1101/2025.07.30.667769. bioRxiv. 2025. PMID: 40766587 Free PMC article. Preprint.
-
The sodium channel subunit SCNN1B suppresses colorectal cancer via suppression of active c-Raf and MAPK signaling cascade.Oncogene. 2023 Feb;42(8):601-612. doi: 10.1038/s41388-022-02576-4. Epub 2022 Dec 23. Oncogene. 2023. PMID: 36564468 Free PMC article.
References
-
- Bishop A.; Buzko O.; Heyeck-Dumas S.; Jung I.; Kraybill B.; Liu Y.; Shah K.; Ulrich S.; Witucki L.; Yang F.; Zhang C.; Shokat K. M. Unnatural ligands for engineered proteins: new tools for chemical genetics. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 577–606. 10.1146/annurev.biophys.29.1.577. - DOI - PubMed
-
- Baud M. G. J.; Lin-Shiao E.; Cardote T.; Tallant C.; Pschibul A.; Chan K. H.; Zengerle M.; Garcia J. R.; Kwan T. T.; Ferguson F. M.; Ciulli A. Chemical biology. A bump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes. Science (Washington, DC, U. S.) 2014, 346 (6209), 638–641. 10.1126/science.1249830. - DOI - PMC - PubMed
-
- Schumann B.; Malaker S. A.; Wisnovsky S. P.; Debets M. F.; Agbay A. J.; Fernandez D.; Wagner L. J. S.; Lin L.; Li Z.; Choi J.; Fox D. M.; Peh J.; Gray M. A.; Pedram K.; Kohler J. J.; Mrksich M.; Bertozzi C. R. Bump-and-Hole Engineering Identifies Specific Substrates of Glycosyltransferases in Living Cells. Mol. Cell 2020, 78 (5), 824–834.e15. 10.1016/j.molcel.2020.03.030. - DOI - PMC - PubMed
-
- Elliott T. S.; Townsley F. M.; Bianco A.; Ernst R. J.; Sachdeva A.; Elsasser S. J.; Davis L.; Lang K.; Pisa R.; Greiss S.; Lilley K. S.; Chin J. W. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nat. Biotechnol. 2014, 32 (5), 465–72. 10.1038/nbt.2860. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous