Thirteen Questions About Using Machine Learning in Causal Research (You Won't Believe the Answer to Number 10!)
- PMID: 33751024
- PMCID: PMC8555423
- DOI: 10.1093/aje/kwab047
Thirteen Questions About Using Machine Learning in Causal Research (You Won't Believe the Answer to Number 10!)
Abstract
Machine learning is gaining prominence in the health sciences, where much of its use has focused on data-driven prediction. However, machine learning can also be embedded within causal analyses, potentially reducing biases arising from model misspecification. Using a question-and-answer format, we provide an introduction and orientation for epidemiologists interested in using machine learning but concerned about potential bias or loss of rigor due to use of "black box" models. We conclude with sample software code that may lower the barrier to entry to using these techniques.
Keywords: causal inference; double-robustness; epidemiologic methods; inverse probability weighting; machine learning; propensity score; targeted maximum likelihood estimation.
© The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Comment in
-
Invited Commentary: Machine Learning in Causal Inference-How Do I Love Thee? Let Me Count the Ways.Am J Epidemiol. 2021 Aug 1;190(8):1483-1487. doi: 10.1093/aje/kwab048. Am J Epidemiol. 2021. PMID: 33751059
Similar articles
-
Machine learning in causal inference for epidemiology.Eur J Epidemiol. 2024 Oct;39(10):1097-1108. doi: 10.1007/s10654-024-01173-x. Epub 2024 Nov 13. Eur J Epidemiol. 2024. PMID: 39535572 Free PMC article.
-
Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.Am J Epidemiol. 2017 Jan 1;185(1):65-73. doi: 10.1093/aje/kww165. Epub 2016 Dec 9. Am J Epidemiol. 2017. PMID: 27941068
-
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054. Int J Biostat. 2019. PMID: 30811344 Free PMC article.
-
Causal models adjusting for time-varying confounding-a systematic review of the literature.Int J Epidemiol. 2019 Feb 1;48(1):254-265. doi: 10.1093/ije/dyy218. Int J Epidemiol. 2019. PMID: 30358847
-
Causal models and learning from data: integrating causal modeling and statistical estimation.Epidemiology. 2014 May;25(3):418-26. doi: 10.1097/EDE.0000000000000078. Epidemiology. 2014. PMID: 24713881 Free PMC article. Review.
Cited by
-
Computational Approaches for Connecting Maternal Stress to Preterm Birth.Clin Perinatol. 2024 Jun;51(2):345-360. doi: 10.1016/j.clp.2024.02.003. Epub 2024 Mar 15. Clin Perinatol. 2024. PMID: 38705645 Free PMC article. Review.
-
Reproducibility and Scientific Integrity of Big Data Research in Urban Public Health and Digital Epidemiology: A Call to Action.Int J Environ Res Public Health. 2023 Jan 13;20(2):1473. doi: 10.3390/ijerph20021473. Int J Environ Res Public Health. 2023. PMID: 36674225 Free PMC article.
-
A Strategic Research Framework for Defeating Diabetes in India: A 21st-Century Agenda.J Indian Inst Sci. 2023 Mar 21:1-22. doi: 10.1007/s41745-022-00354-5. Online ahead of print. J Indian Inst Sci. 2023. PMID: 37362852 Free PMC article. Review.
-
Table 2 Fallacy in Descriptive Epidemiology: Bringing Machine Learning to the Table.Int J Environ Res Public Health. 2023 Jun 21;20(13):6194. doi: 10.3390/ijerph20136194. Int J Environ Res Public Health. 2023. PMID: 37444042 Free PMC article.
-
Implementing machine learning methods with complex survey data: Lessons learned on the impacts of accounting sampling weights in gradient boosting.PLoS One. 2023 Jan 13;18(1):e0280387. doi: 10.1371/journal.pone.0280387. eCollection 2023. PLoS One. 2023. PMID: 36638125 Free PMC article.
References
-
- Friedman J, Hastie T, Tibshirani R. The Elements of Statistical Learning. New York, NY: Springer Publishing Company; 2001.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources