Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Mar 4;23(23 Suppl 1):i55-i62.
doi: 10.1093/europace/euaa391.

Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization

Affiliations

Deep learning formulation of electrocardiographic imaging integrating image and signal information with data-driven regularization

Tania Bacoyannis et al. Europace. .

Abstract

Aims: Electrocardiographic imaging (ECGI) is a promising tool to map the electrical activity of the heart non-invasively using body surface potentials (BSP). However, it is still challenging due to the mathematically ill-posed nature of the inverse problem to solve. Novel approaches leveraging progress in artificial intelligence could alleviate these difficulties.

Methods and results: We propose a deep learning (DL) formulation of ECGI in order to learn the statistical relation between BSP and cardiac activation. The presented method is based on Conditional Variational AutoEncoders using deep generative neural networks. To quantify the accuracy of this method, we simulated activation maps and BSP data on six cardiac anatomies.We evaluated our model by training it on five different cardiac anatomies (5000 activation maps) and by testing it on a new patient anatomy over 200 activation maps. Due to the probabilistic property of our method, we predicted 10 distinct activation maps for each BSP data. The proposed method is able to generate volumetric activation maps with a good accuracy on the simulated data: the mean absolute error is 9.40 ms with 2.16 ms standard deviation on this testing set.

Conclusion: The proposed formulation of ECGI enables to naturally include imaging information in the estimation of cardiac electrical activity from BSP. It naturally takes into account all the spatio-temporal correlations present in the data. We believe these features can help improve ECGI results.

Keywords: Computational modelling; Deep learning; Electrocardiographic imaging; Generative model; Inverse problem.

PubMed Disclaimer

LinkOut - more resources